• Title/Summary/Keyword: 키워드 기반

Search Result 1,111, Processing Time 0.03 seconds

Keyword Extraction based on Style (스타일 기반 키워드 추출)

  • Lee, Joon-Hwi;Lee, Won-Suk
    • Annual Conference of KIPS
    • /
    • 2002.04b
    • /
    • pp.1049-1052
    • /
    • 2002
  • 기존의 키워드 추출 방법은 출현회수(frequency)에 기반한 가중치(weight) 부여 방식이 많이 쓰였다. 본 논문에서는 HTML 문서와 같이 스타일이 적용된 문서의 경우 출현회수와 함께 단어에 적용된 스타일을 고려하여 가중치를 부여해 키워드를 추출하는 방법을 제안한다. 가중치를 부여할 스타일 항목과 항목별 가중치 부여방법을 정의하고 이를 단어별로 합산하고 정규화(normalization)하는 방법을 정의하여 스타일에 기반 해 키워드를 추출하였다. 내용이 특정된 도메인으로부터 순위(ranking)가 매겨진 도메인 키워드 리스트를 뽑아서 이를 기준으로 삼아 기존의 출현회수 기반의 키워드 추출 방식과 양적, 질적인 비교를 수행하여 우월함을 보였다.

  • PDF

RAKTA: Automation of Exploratory Testing Based on Keyword (RAKTA: 키워드 기반 탐색적 테스팅 자동화)

  • Hwang, Jun-Sun;Choi, Eun Man
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.331-334
    • /
    • 2019
  • 일반적인 키워드 기반 테스트는 기능 위주의 키워드를 작성하여 테스트를 자동화하여 비용은 적게 들지만 활용도가 높은 테스트를 자동화기 어렵다. 한편 탐색적 테스트는 리스크 기반으로 차터를 작성하여 짧은 시간동안 많은 에러를 탐지하는 장점이 있으나, 문서화가 미흡하다는 단점이 있다. 위와 같은 단점을 보완하기 위하여 탐색적 테스트의 기본 원리를 고수하면서 효율적 키워드 기반 자동화가 가능한 RAKTA(Record And Keyword-based Test Automation) 방법론을 제안한다. RAKTA는 오픈 소스 키워드 기반 자동화 프레임워크인 로봇 프레임워크의 기술을 사용하여, 키워드 기반과, 탐색적 테스트의 장점을 뽑아 효율적으로 테스트 자동화하여 비용을 줄이고 많은 에러를 탐지할 수 있다. 또한 본 논문에서는 RAKTA 방법론을 활용한 여러 가지 키워드 재사용 사례와 기존 조직에서 사용하던 테스트 스크립트를 혼합하여 통합 테스트, 인수 테스트, 설치 테스트를 자동화하는 방법을 제안한다.

Experimental Study of Keyword-Based Exploratory Testing (키워드 기반 탐색적 테스트의 실험적 연구)

  • Hwang, Jun Sun;Choi, Eun Man
    • Journal of Software Engineering Society
    • /
    • v.29 no.2
    • /
    • pp.13-20
    • /
    • 2020
  • The exploratory test was introduced as a desirable test method due to its fast development cycle, but it is not actively adopted because documentation and analysis of the test range are required for application. On the other hand, keyword-based testing has been introduced as a way to save resources and facilitate maintenance, but it is difficult to plan tests in advance due to the large number of variables such as data, settings, interactions, sequence and timing. However, in keyword-based testing, you can create a test case based on keywords by presenting clear criteria and methods for creating keywords and applying the exploration testing process. In this paper, we propose a model that automates exploratory tests based on keywords. To verify the effectiveness, we compared the general keyword-based test(KBT) and keyword-based exploratory test(KBET), and compared with the exploratory normal test case(ETC) and keyword-based exploratory test(KBET).

A Automated Method for Training Keyword Spotter based on Speech Synthesis (키워드 음성인식을 위한 음성합성 기반 자동 학습 기법)

  • Lim, Jaebong;Lee, Jongsoo;Cho, Yonghun;Baek, Yunju
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.494-496
    • /
    • 2021
  • 최근 경량 딥러닝 기반 키워드 음성인식은 가전, 완구, 키오스크 등 다양한 응용에 음성 인터페이스를 쉽게 적용할 수 있는 기술로서 주목받고 있다. 키워드 음성인식은 일부 키워드만 인식 가능한 음성인식 기술로서 저성능 디바이스에서 활용 가능한 장점이 있다. 그러나 응용에 따라 필요한 키워드에 대하여 다시 음성데이터를 수집해야하고 이를 학습하여 모델을 새로 준비해야하는 단점이 있다. 따라서 본 연구에서는 음성데이터 수집 없이 음성합성을 통해 생성한 음성으로만 키워드 음성인식 모델을 학습하는 음성합성 기반 자동 학습 기법을 제안하였다. 생성한 음성데이터를 활용하고자하는 시도가 활발히 이루어지고 있으나, 기존 연구에서는 정확도를 유지하기 위하여 수집한 실제 음성데이터가 필요한 한계가 있다. 제안한 자동 학습 기법은 생성한 음성데이터에 대해 복합 데이터 증대 기법을 적용하여 실제 음성데이터 없이 키워드 음성인식의 정확도를 높였다. 제안한 기법에 대하여 상용 음성합성 서비스를 기반으로 수집한 한국어 키워드 데이터세트를 활용하여 성능평가를 진행하였다. 20개 한국어 키워드에 대해 실험한 결과, 제안한 기법을 적용하여 학습시킨 키워드 음성인식 모델의 정확도는 86.44%임을 확인하였다.

Design and Implementation of Keyword Search Advertising System (키워드 광고 시스템의 설계 및 구현)

  • Jee, Hye-Sung;Lyu, Ki-Gon;Lim, Heui-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.32-35
    • /
    • 2008
  • 본 논문은 포털 사이트의 효율적인 광고 제공을 위한 자연어처리 기반의 키워드 광고 시스템을 제안한다. 사용자의 질의에 대한 형태소 분석 결과를 사용하여, 기존의 키워드 정합에 의한 광고 시스템보다 재현율을 향상시킬 수 있었다. 또한, 웹 기반 키워드 광고 뿐 아니라 메신저를 통한 대화 내용 기반 키워드 광고도 제안한다.

  • PDF

Content-Based Image Retrieval System using Keyword Mapping and Color Features (키워드 매핑과 칼라 특징을 이용한 내용기반 화상 검색 시스템의 구현)

  • Choi, Ki-Ho;Choi, Hyun-Sub
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2498-2511
    • /
    • 1998
  • 본 논문에서는 질의화상을 위한 칼라의 위치묘사 키워드와 칼라 키워드를 칼라특징으로 매핑하여 검색할 수 있는 내용기반 화상 검색 방법을 제안하고 이를 구현하였다. 칼라 키워드는 화상의 칼라 특징을 사용하여 칼라 세그먼트 프리미티브로부터 정의되고, 위치 묘사 키워드는 칼라 영역 정보를 사용하여 위치 세그먼트 프리미티브로부터 정의된다. 정의된 각 칼라 키워드 프리미티브는 화상의 칼라특징으로 매핑되어 저장된 참조화상의 6x6 블록의 칼라 특징과 비교하게 되고 유사도 순치 묘사 키워드와 칼라 키워드 검색의 정확도를 측정하였고, 화상검색 실험결과, 평균 recall/precision이 0.72/0.80를 보임으로써 내용기반 화상 데이터 검색에 제안된 방법이 유용함을 보였다.

  • PDF

Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS (SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현)

  • Seo, Hyun-Gon;Park, Hee-Wan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.17-24
    • /
    • 2018
  • One of the major issues in big data processing is extracting keywords from internet and using them to process the necessary information. Most of the proposed keyword extraction algorithms extract keywords using search function of a large portal site. In addition, these methods extract keywords based on already posted or created documents or fixed contents. In this paper, we propose a KAES(Keyword Advertisement Extraction System) system that helps the potential shopping keyword marketing to extract issue keywords and related keywords based on dynamic instant messages such as various issues, interests, comments posted on SNS. The KAES system makes a list of specific accounts to extract keywords and related keywords that have most frequency in the SNS.

A Comparative Study of a New Approach to Keyword Analysis: Focusing on NBC (키워드 분석에 대한 최신 접근법 비교 연구: 성경 코퍼스를 중심으로)

  • Ha, Myoungho
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.33-39
    • /
    • 2021
  • This paper aims to analyze lexical properties of keyword lists extracted from NLT Old Testament Corpus(NOTC), NLT New Testament Corpus(NNTC), and The NLT Bible Corpus(NBC) and identify that text dispersion keyness is more effective than corpus frequency keyness. For this purpose, NOTC including around 570,000 running words and NNTC about 200,000 were compiled after downloading the files from NLT website of Bible Hub. Scott's (2020) WordSmith 8.0 was utilized to extract keyword lists through comparing a target corpus and a reference corpus. The result demonstrated that text dispersion keyness showed lexical properties of keyword lists better than corpus frequency keyness and that the former was a superior measure for generating optimal keyword lists to fully meet content-generalizability and content distinctiveness.

Automatic Keyword Extraction in News Articles for Trend Tracking (키워드 가중치를 이용한 뉴스 기사에서의 이슈 키워드 자동 추출 시스템)

  • Kim, Miji;Lee, Jaewon;Jang, Dalwon;Lee, JongSeol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.150-152
    • /
    • 2018
  • 본 논문에서는 포털 사이트에 게재된 뉴스 기사 집합에서 이슈가 된 키워드들을 자동으로 추출하는 시스템을 소개한다. 포털 사이트에서 사용하는 기존의 키워드 추출 시스템은 검색 횟수를 기반으로 하고 있으며, 뉴스 기사에서 단어 간의 상대적 중요성을 반영하지 못하고, 외부로부터 영향을 받아 순위 조작과 같은 문제점을 수반할 수 있다. 제안하는 시스템에선 TF-IDF 모델을 사용하여 단어 간의 상대적인 중요성에 기반하고, 추출된 키워드들의 시각적 변화를 반영하여 이슈 키워드를 추출한다. 제안한 시스템의 효용성 확인을 위해 58,996 개의 정치 뉴스 기사를 수집하였으며, TF-IDF 기반의 제안 방식과 TF 기반의 기존 방식을 비교하였다. 제안한 시스템이 기존 방식보다 시간에 따른 정치 뉴스의 이슈 변화를 분석하는 데 효과적인 것을 확인하였다.

  • PDF

Keywords-based Video Summary System using FastText Algorithm (FastText 알고리즘을 이용한 사용자 지정 키워드 기반 동영상 요약 시스템)

  • Kyungmin Kim;Seungmin Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.693-694
    • /
    • 2023
  • 본 논문에서는 FastText 알고리즘을 기반으로 한 사용자 지정 키워드 기반 동영상 요약 시스템을 제안한다. 사용자가 키워드를 입력하면 시스템은 해당 키워드와 관련된 단어들을 FastText를 통해 추출하며, 이를 STT (Speech-to-Text)로 변환된 동영상에서 타임 스탬프 기반으로 인식한다. 인식된 키워드와 관련된 내용은 클립 형식으로 요약되어 사용자에게 제공된다. 본 연구의 목적은 숏폼 콘텐츠 환경에서 효과적인 콘텐츠 추출 및 제공을 통해 사용자 경험과 정보 제공의 효율성을 향상시키기 위함이다. 제안된 시스템은 사용자 지정 키워드에 맞춰 다양한 동영상 플랫폼에서 효율적인 영상 요약을 제공함으로써 온라인 동영상 환경에서 큰 혁신을 이끌어낼 것으로 기대된다.

  • PDF