• Title/Summary/Keyword: 키워드광고

Search Result 68, Processing Time 0.029 seconds

A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning (딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법)

  • Ka-Hyeon Kim;Heonchang Yu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.

A content-based movie recommendation method for targeted advertising (맞춤형 광고를 위한 내용기반 영화 추천 기법)

  • Bong, Seong-Yong;Suh, In-Sik;Kim, Moon-Sik;Hwang, Kyu-Baek
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.269-272
    • /
    • 2011
  • 추천은 다양한 컨텐츠 중에서 사용자가 원하는 것을 선택할 수 있도록 돕는 것이다. 이러한 추천은 광고주가 자신의 광고에 적절한 컨텐츠를 찾을 때에도 활용될 수 있다. 본 논문에서는 광고를 표현하는 태그와 영화를 나타내는 주제어들을 매칭하여 광고에 적합한 영화를 추천하는 문제를 다룬다. 이 문제의 경우, 광고를 표현하는 태그의 개수가 적고, 영화의 주제어와 성격이 다른 경우가 많아 단순 매칭을 활용한 추천 기법으로는 결과를 얻을 수 없는 경우도 존재한다. 우리는 이러한 문제를 완화하기 위해 키워드 확장을 통한 추천 기법을 제안한다. 구체적으로 각 영화 컨텐츠가 가진 주제어를 위키피디아를 통해 검색하고 이를 통해 주제어를 확장한다. 광고의 태그 또한 위키피디아 검색을 통해 확장한다. 이렇게 확장된 영화 주제어와 광고 태그를 연관성 규칙에 기반하여 매칭한다. 실험 결과 단순 매칭보다 제안한 확장을 통한 매칭이 37.5%의 성능 향상을 보였다.

감동을 말하는 인쇄광고 -대기업의 감동을 말하는 인쇄광고, 불황기 '희망과 행복'의 메시지

  • Park, Seong-Gwon
    • 프린팅코리아
    • /
    • v.8 no.5
    • /
    • pp.76-81
    • /
    • 2009
  • 지난 2008 한경광고대상 수상작들의 키워드는 '꿈과 희망'이었다. 외환위기 당시보다 더 강도 높은 불안이 밀려오고 있는 이때, 고객들이 가장 갈구하는 것은 '희망과 행복'의 메시지였다. 좋은 광고 역시 고객의 이 같은 마음을 읽어내고 이를 아름다운 화상으로 표현해 내는 것이다. 최근 인쇄광고에 견주어 영상광고의 효과를 과대평가하는 경향이 있다. 기억에 잘 남는 훌륭한 광고는 모두가 인쇄광고다. 그러나 인쇄매체는 영상매체보다 훨씬 힘들다. TV는 조명, 액션, 음악, 댄싱, 옵티칼효과 등 도움을 받을 수 있는 보조 요소가 한두 가지가 아니다. 그러나 인쇄매체보다 훨씬 힘들다. TV는 조명, 액션, 음악, 댄싱, 옵티칼효과 등 도움을 받을 수 있는 보조 요소가 한두 가지가 아니다. 그러나 인쇄매체의 경우에는 제품의 가장 강력한 셀링 포인트만을 찾아내야 한다. 이를 위해서 강력하면서도 재미있고, 또 독자를 끌어들이는 헤드라인을 써야 한다.

  • PDF

A Matching Method of Recommendations Advertisements by Extracting Immersive 360-degree Video Object (실감형 360도 영상저작물 객체 추출을 통한 추천광고 매칭방법)

  • Jang, Seyoung;Park, Byeongchan;Kim, Youngmo;Yoo, Injae;Lee, Jeacheng;Kim, Seok-Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.231-233
    • /
    • 2020
  • 최근 360도 형태로 영상을 촬영하고 제공하는 경우가 많아 일반적인 동영상과 달리 360도 형태의 영상저작물에 적절하고 효과적인 방법으로 광고를 삽입하여 노출 시킬 수 있는 방법이 필요하게 되었다. 따라서 본 논문에서는 실감형 360도 영상저작물 객체 추출을 통한 추천 광고 매칭방법을 제안한다. 360도 영상저작물 내에 광고를 매칭하고 추출된 객체와 연관된 광고를 추출하여 해당 프레임에 자동으로 삽입 노출이 가능하도록 하는 방법으로 이 방법을 이용함으로써 사용자의 현재 시점 영역 내에 광고 영상이 노출되도록 광고의 삽입 위치를 이동시켜 영상이 재생되도록 하거나, 광고 영상이 삽입된 좌표로 사용자의 현재 시점을 이동시켜 영상이 재생되게 할 수 있다.

  • PDF

Identifying Influencing Factors on the Price Per Click of Keyword Advertising : Focusing on Keyword Type, Search Number and Competition (온라인 키워드 광고 시장에서 광고 단가에 영향을 미치는 요인 분석 : 키워드 유형, 검색 횟수와 경쟁업체의 수를 중심으로)

  • Lee, Hong Joo
    • Journal of Information Technology Services
    • /
    • v.11 no.3
    • /
    • pp.257-267
    • /
    • 2012
  • Many advertisers utilize sponsored search in search engines since customers want to find relevant information on their purchases from the search engines. Many factors have influences on price per click of the sponsored search. These influences are different based on the types of keywords such as search/experience or prominent/specific. However, differences of the influences have not been studied well. Thus, this study wants to identify the differences of the influences according the type of keywords. One month data of keyword advertising were collected from Naver. The influences of search number, click through rate, and competition on price per click were different according to the keyword types.

A Normalization Method of Distorted Korean SMS Sentences for Spam Message Filtering (스팸 문자 필터링을 위한 변형된 한글 SMS 문장의 정규화 기법)

  • Kang, Seung-Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.7
    • /
    • pp.271-276
    • /
    • 2014
  • Short message service(SMS) in a mobile communication environment is a very convenient method. However, it caused a serious side effect of generating spam messages for advertisement. Those who send spam messages distort or deform SMS sentences to avoid the messages being filtered by automatic filtering system. In order to increase the performance of spam filtering system, we need to recover the distorted sentences into normal sentences. This paper proposes a method of normalizing the various types of distorted sentence and extracting keywords through automatic word spacing and compound noun decomposition.

콘텐츠연재 / 콘텐츠 유료화는 거역못할 트랜드

  • Jo, Yeong-Tak
    • Digital Contents
    • /
    • no.8 s.99
    • /
    • pp.61-65
    • /
    • 2001
  • 최근 인터넷 기업에 대한 전망이 회의론으로 기울어가고, 실제 수많은 기업들이 도산하거나, 사이트를 폐쇄하면서, 인터넷 광고 전망이 어두워졌다. 또한, 최근 온라인 기업의 선두 주자인 야후와 아마존 등이 유료화 대열에 끼어들면서, 자연스럽게 비즈니스의 키워드는 콘텐츠 유료화와 수익 창출로 급속하게 이동하고 있는 추세이다.

  • PDF

A Methodology for Extracting Shopping-Related Keywords by Analyzing Internet Navigation Patterns (인터넷 검색기록 분석을 통한 쇼핑의도 포함 키워드 자동 추출 기법)

  • Kim, Mingyu;Kim, Namgyu;Jung, Inhwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.123-136
    • /
    • 2014
  • Recently, online shopping has further developed as the use of the Internet and a variety of smart mobile devices becomes more prevalent. The increase in the scale of such shopping has led to the creation of many Internet shopping malls. Consequently, there is a tendency for increasingly fierce competition among online retailers, and as a result, many Internet shopping malls are making significant attempts to attract online users to their sites. One such attempt is keyword marketing, whereby a retail site pays a fee to expose its link to potential customers when they insert a specific keyword on an Internet portal site. The price related to each keyword is generally estimated by the keyword's frequency of appearance. However, it is widely accepted that the price of keywords cannot be based solely on their frequency because many keywords may appear frequently but have little relationship to shopping. This implies that it is unreasonable for an online shopping mall to spend a great deal on some keywords simply because people frequently use them. Therefore, from the perspective of shopping malls, a specialized process is required to extract meaningful keywords. Further, the demand for automating this extraction process is increasing because of the drive to improve online sales performance. In this study, we propose a methodology that can automatically extract only shopping-related keywords from the entire set of search keywords used on portal sites. We define a shopping-related keyword as a keyword that is used directly before shopping behaviors. In other words, only search keywords that direct the search results page to shopping-related pages are extracted from among the entire set of search keywords. A comparison is then made between the extracted keywords' rankings and the rankings of the entire set of search keywords. Two types of data are used in our study's experiment: web browsing history from July 1, 2012 to June 30, 2013, and site information. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The original sample dataset contains 150 million transaction logs. First, portal sites are selected, and search keywords in those sites are extracted. Search keywords can be easily extracted by simple parsing. The extracted keywords are ranked according to their frequency. The experiment uses approximately 3.9 million search results from Korea's largest search portal site. As a result, a total of 344,822 search keywords were extracted. Next, by using web browsing history and site information, the shopping-related keywords were taken from the entire set of search keywords. As a result, we obtained 4,709 shopping-related keywords. For performance evaluation, we compared the hit ratios of all the search keywords with the shopping-related keywords. To achieve this, we extracted 80,298 search keywords from several Internet shopping malls and then chose the top 1,000 keywords as a set of true shopping keywords. We measured precision, recall, and F-scores of the entire amount of keywords and the shopping-related keywords. The F-Score was formulated by calculating the harmonic mean of precision and recall. The precision, recall, and F-score of shopping-related keywords derived by the proposed methodology were revealed to be higher than those of the entire number of keywords. This study proposes a scheme that is able to obtain shopping-related keywords in a relatively simple manner. We could easily extract shopping-related keywords simply by examining transactions whose next visit is a shopping mall. The resultant shopping-related keyword set is expected to be a useful asset for many shopping malls that participate in keyword marketing. Moreover, the proposed methodology can be easily applied to the construction of special area-related keywords as well as shopping-related ones.

A Study on Analysis of consumer perception of YouTube advertising using text mining (텍스트 마이닝을 활용한 Youtube 광고에 대한 소비자 인식 분석)

  • Eum, Seong-Won
    • Management & Information Systems Review
    • /
    • v.39 no.2
    • /
    • pp.181-193
    • /
    • 2020
  • This study is a study that analyzes consumer perception by utilizing text mining, which is a recent issue. we analyzed the consumer's perception of Samsung Galaxy by analyzing consumer reviews of Samsung Galaxy YouTube ads. for analysis, 1,819 consumer reviews of YouTube ads were extracted. through this data pre-processing, keywords for advertisements were classified and extracted into nouns, adjectives, and adverbs. after that, frequency analysis and emotional analysis were performed. Finally, clustering was performed through CONCOR. the summary of this study is as follows. the first most frequently mentioned words were Galaxy Note (n = 217), Good (n = 135), Pen (n = 40), and Function (n = 29). it can be judged through the advertisement that consumers "Galaxy Note", "Good", "Pen", and "Features" have good functional aspects for Samsung mobile phone products and positively recognize the Note Pen. in addition, the recognition of "Samsung Pay", "Innovation", "Design", and "iPhone" shows that Samsung's mobile phone is highly regarded for its innovative design and functional aspects of Samsung Pay. second, it is the result of sentiment analysis on YouTube advertising. As a result of emotional analysis, the ratio of emotional intensity was positive (75.95%) and higher than negative (24.05%). this means that consumers are positively aware of Samsung Galaxy mobile phones. As a result of the emotional keyword analysis, positive keywords were "good", "good", "innovative", "highest", "fast", "pretty", etc., negative keywords were "frightening", "I want to cry", "discomfort", "sorry", "no", etc. were extracted. the implication of this study is that most of the studies by quantitative analysis methods were considered when looking at the consumer perception study of existing advertisements. In this study, we deviated from quantitative research methods for advertising and attempted to analyze consumer perception through qualitative research. this is expected to have a great influence on future research, and I am sure that it will be a starting point for consumer awareness research through qualitative research.

Fraud Click Identification Using Fingerprinting Method (핑거프린팅 기법을 이용한 부정 클릭의 식별)

  • Hong, Young-Ran;Kim, Dong-Soo
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.3
    • /
    • pp.159-168
    • /
    • 2011
  • To identify fraud clicks in the Internet advertisement, existing studies have considered keyword, visit time, and client IP as an independent variable for the standard. These methods have limitations in identifying the fraud clicks that utilize automation tools, for they are methods based on client IP and human activities on the Internet. This paper proposes that fingerprinting values of the variable combination should be used to identify fraud clicks. The proposed model is composed of 3 stages and the fingerprinting values are compared with the other input data at each stage; IP fingerprinting in the first stage, IP and session data fingerprinting in the second stage, and session data and keyword fingerprinting in the third stage. We showed that the proposed model of the fraud click identification is more correct than existing methods through experiments according to the proposed scheme.