• Title/Summary/Keyword: 키네틱스

Search Result 5, Processing Time 0.018 seconds

A study on the auto encoder-based anomaly detection technique for pipeline inspection (관로 조사를 위한 오토 인코더 기반 이상 탐지기법에 관한 연구)

  • Gwantae Kim;Junewon Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.83-93
    • /
    • 2024
  • In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.

Thermal Degradation Kinetics of Tocopherols during Heating without Oxygen (무산소 가열시 토코페롤의 열분해 키네틱스)

  • Chung, Hae-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2007
  • The thermal degradation kinetics of alpha-, gamma- and delta-tocopherols was studied during heating at 100, 150 200 and 250$^{\circ}C$ for 5, 15, 30 and 60 min in the absence of oxygen. The tocopherols were separated by HPLC using a reversed phase ${\mu}$-Bondapak C$_{18}$-column with two kinds of elution solvent system in a gradient mode. The kinetics for degradation of ${\alpha}$-, ${\gamma}$- and ${\delta}$-tocopherols was analyzed as a function of temperatures and times. The degradation of tocopherols was described by the first-order kinetics in the absence of oxygen. The rate of tocopherols degradation was dependent on heating temperatures. The degradation rate constants for ${\alpha}$-, ${\gamma}$ and ${\delta}$-tocopherols showed an increasing trend as the heating temperature increased. The magnitude order of the experimental activation energy was ${\delta}$->${\gamma}$->${\alpha}$-tocopherol.

Evaluation of inactivation kinetics on pathogenic microorganisms by free chlorine/UV hybrid disinfection system (전해 염소수/자외선 결합 시스템을 이용한 병원성 미생물의 불활성화 키네틱스 평가)

  • Seo, Young-Seok;Kim, Aerin;Cho, Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.379-388
    • /
    • 2019
  • Chlorination and UV illumination are being widely applied to inactivate a number of pathogenic microbials in the environment. Here, we evaluated the inactivation efficiency of individual and combined treatments of chlorination and UV under various aqueous conditions. UV dosage was required higher in waste water than in phosphate buffer to achieve the similar disinfecting efficiency. Free chlorine generated by electrolysis of waste water was abundant enough to inactivate microbials. Based on these, hybrid system composed of sequential treatment of electrolysis-mediated chlorination and UV treatment was developed under waste water conditions. Compared to individual treatments, hybrid system inactivated bacteria (i.e., E. coli and S. typhimurium) and viruses (i.e., MS-2 bacteriophage, rotavirus, and norovirus) more efficiently. The hybrid system also mitigated the photo re-pair of UV-driven DNA damages of target bacteria. The combined results suggested the hybrid system would achieve high inactivation efficiency and safety on various pathogenic microbials in wastewater.

Development of a Legged Walking Robot Based on Jansen Kinetics (얀센 키네틱스를 기반으로 한 보행 로봇 개발)

  • Kim, Sun-Wook;Kim, Yeoun-Gyun;Jung, Hah-Min;Lee, Se-Han;Hwang, Seung-Gook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.509-515
    • /
    • 2010
  • In this paper, the mechanism that can walk efficiently in wet land or sand area is proposed. A vision camera is attached to the mechanism, which makes a kind of biologically inspired robot for coast guard. This visionary information enables the biologically inspired robot to react in peripheral environment by a soft-computing algorithm. In addition, the biologically inspired robot can achieve the mission appointed by a programmer connecting with outside, based on RF and Blue-tooth communication module. Therefore, the purpose of this research is the implementation of the biologically inspired robot that can operate most adaptively in sand and wet surface based on Theo Jansen mechanism.