• Title/Summary/Keyword: 클릭 로그 분석

Search Result 30, Processing Time 0.026 seconds

Improvement of Retrieval Convenience through the Correlation Analysis between Social Value and Query Pattern (소셜지수와 질의패턴의 상관관계 분석을 통한 검색 편의성 향상)

  • Ahn, Moo-Hyun;Park, Gun-Woo;Lee, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.391-394
    • /
    • 2009
  • 정보의 양이 폭발적으로 증가함에 따라 웹 사용자가 원하는 적합한 데이터를 찾아내는 것은 매우 어렵다. 이는 웹 사용자마다 서로 다른 검색의도와 질의의 모호성에 의한 것으로, 이와 같은 검색의 어려움을 해결하기 위해 많은 연구들이 수행되어 왔다. 질의 로그는 검색자의 검색 의도가 내포되어 있는 중요한 자료이다. 따라서 웹 사용자별 질의 로그 패턴을 분석하여 유사한 질의를 사용하는 웹 사용자들을 클러스터링 하여 검색에 적용한다면 좀 더 유용한 정보를 획득할 수 있다. 즉, 특정 카테고리와 연관된 질의를 자주 사용하는 웹 사용자들은 해당 분야에 관심이 많을 것이며, 또한 다른 카테고리에 관심이 높은 사람보다 상호간에 소셜지수가 높게 나타날 것이다. 특정 주제에 대해 검색을 할 경우 해당 분야에 관심이 높은 웹 사용자들의 질의 및 클릭한 URL 정보를 상속받을 수 있다면 찾고자 하는 정보에 보다 빨리 접근할 수 있다. 따라서 본 연구는 질의패턴 분석을 통해 카테고리별로 관심도가 높은 웹 사용자들을 클러스터링 한 후 해당 카테고리에 대한 정보 검색시 이들이 사용한 질의와 클릭한 URL 정보를 웹 사용자들에게 제공해줌으로써 정보검색의 편의성을 향상시키기 위한 방안을 제안한다.

Finding high utility old itemsets in web-click streams (웹 클릭 스트림에서 고유용 과거 정보 탐색)

  • Chang, Joong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.521-528
    • /
    • 2016
  • Web-based services are used widely in many computer application fields due to the increasing use of PCs and mobile devices. Accordingly, topics on the analysis of access logs generated in the application fields have been researched actively to support personalized services in the field, and analyzing techniques based on the weight differentiation of information in access logs have been proposed. This paper outlines an analysis technique for web-click streams, which is useful for finding high utility old item sets in web-click streams, whose data elements are generated at a rapid rate. Using the technique, interesting information can be found, which is difficult to find in conventional techniques for analyzing web-click streams and is used effectively in target marketing. The proposed technique can be adapted widely to analyzing the data generated in a range of computing application fields, such as IoT environments, bio-informatics, etc., which generated data as a form of data streams.

Analysis of Web Log Using Clementine Data Mining Solution (클레멘타인 데이터마이닝 솔루션을 이용한 웹 로그 분석)

  • Kim, Jae-Kyeong;Lee, Kun-Chang;Chung, Nam-Ho;Kwon, Soon-Jae;Cho, Yoon-Ho
    • Information Systems Review
    • /
    • v.4 no.1
    • /
    • pp.47-67
    • /
    • 2002
  • Since mid 90's, most of firms utilizing web as a communication vehicle with customers are keenly interested in web log file which contains a lot of trails customers left on the web, such as IP address, reference address, cookie file, duration time, etc. Therefore, an appropriate analysis of the web log file leads to understanding customer's behaviors on the web. Its analysis results can be used as an effective marketing information for locating potential target customers. In this study, we introduced a web mining technique using Clementine of SPSS, and analyzed a set of real web log data file on a certain Internet hub site. We also suggested a process of various strategies build-up based on the web mining results.

The Multimedia Searching Behavior of Korean Portal Users (국내 포털 이용자들의 멀티미디어 검색 행태 분석)

  • Park, So-Yeon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.1
    • /
    • pp.101-115
    • /
    • 2010
  • The main difference between web searching and traditional searching is that the web provides and supports multimedia searching. This study aims to investigate the multimedia searching behavior of users of NAVER, a major Korean search portal. In conducting this study, the query logs and click logs of a unified search service were analyzed. The results of this study show that among the multimedia queries submitted by users, audio searches are the dominant media type, followed similarly by video and image searches. On the other hand, among the multimedia documents clicked on, video is the most popular collection type followed by image and audio collections. Entertainment is the most popular topic in both multimedia queries and clicks. The results of this study can be implemented for the portal's development of multimedia content and searching algorithms.

Pet Shop Recommendation System based on Implicit Feedback (암묵적 피드백 기반 반려동물 용품 추천 시스템)

  • Choi, Heeyoul;Kang, Yunhee;Kang, Myungju
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1561-1566
    • /
    • 2017
  • Due to the advances in machine learning and artificial intelligence technologies, many new services have become available. Among such services, recommendation systems have already been successfully applied to commercial services and made profits as in online shopping malls. Most recommendation algorithms in commercial services are based on content analysis or explicit feedback rates as in movie recommendations. However, many online shopping malls have difficulties in content analysis or are lacking explicit feedbacks on their items, which results in no recommendation system for their items. Even for such service systems, user log data is easily available, and if recommendations are possible with such log data, the quality of their service can be improved. In this paper, we extract implicit feedback like click information for items from log data and provide a recommendation system based on the implicit feedback. The proposed system is applied to a real in-service online shopping mall.

Information Seeking Behavior of Shopping Site Users: A Log Analysis of Popshoes, a Korean Shopping Search Engine (이용자들의 쇼핑 검색 행태 분석: 팝슈즈 로그 분석을 중심으로)

  • Park, Soyeon;Cho, Kihun;Choi, Kirin
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.4
    • /
    • pp.289-305
    • /
    • 2015
  • This study aims to investigate information seeking behavior of Popshoes users. Transaction logs of Popshoes, a major Korean shopping search engine, were analyzed. These transaction logs were collected over 3 months period, from January 1 to March 31, 2015. The results of this study show that Popshoes users behave in a simple and passive way. In the total sessions, more users chose to browse a directory than typing and submitting a query. However, queries played a more crucial role in important decision makings such as search results clicks and product purchases than directory browsing. The results of this study can be implemented to the effective development of shopping search engines.

웹로그데이터를 이용한 유인가격전략의 효용성 차이 분석

  • Yeom, Dae-Seong;Chae, Myeong-Sin
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.168-173
    • /
    • 2007
  • 인터넷 쇼핑몰들은 저조한 수익성에도 불구하고 소비자를 끌어들여 매출을 증대시키기 위해 다양한 유인가격전략을 사용하고 있으나 이러한 유인전략이 과연 효용성이 있는가 하는 문제를 주제로 6 개 인터넷 쇼핑몰의 실제 web logdata 를 활용하여 소비자의 실제 쇼핑행동을 파악하여 유인가격전략의 효용성을 실증적으로 측정하였다. 방대한 클릭데이터를 효과적으로 정리하는 방법을 제시했고 인터넷 쇼핑몰 업체의 유인가격전략 수립에 대한 가이드를 제시하였다.

  • PDF

Usage Pattern Analysis and Comparative Analysis among User Groups of Web Sites Using Process Mining Techniques (프로세스 마이닝을 이용한 웹 사이트의 이용 패턴 분석 및 그룹 간 비교 분석)

  • Kim, Seul-Gi;Jung, Jae-Yoon
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Today, many services are supported on the web sites. Analysis of usage patterns of web site visitors is very important to optimize the use and efficiency of the web sites. In this study, analysis of usage patterns and comparative analysis of user groups were conducted by analyzing web access log provided by BPI Challenge 2016. This data provides access logs to the web site in the IT system of a Dutch Employee Insurance Agency (UWV). The customer information, and the click data describing the customers' behavior when using the agency's web site. In this study, we use process mining techniques to analyze the usage patterns of customers and the characteristics of customer groups, and ultimately improve the service quality of customers using web services.

  • PDF

User Identification and Session completion in Input Data Preprocessing for Web Mining (웹 마이닝을 위한 입력 데이타의 전처리과정에서 사용자구분과 세션보정)

  • 최영환;이상용
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.843-849
    • /
    • 2003
  • Web usage mining is the technique of data mining that analyzes web users' usage patterns by large web log. To use the web usage mining technique, we have to classify correctly users and users session in preprocessing, but can't classify them completely by only log files with standard web log format. To classify users and user session there are many problems like local cache, firewall, ISP, user privacy, cookey etc., but there isn't any definite method to solve the problems now. Especially local cache problem is the most difficult problem to classify user session which is used as input in web mining systems. In this paper we propose a heuristic method which solves local cache problem by using only click stream data of server side like referrer log, agent log and access log, classifies user sessions and completes session.

A Study on the Types of Online Shopping Queries using Topic Modeling and Principal Components Analysis (토픽모델링과 주성분 분석을 활용한 온라인 쇼핑 검색 질의 유형 분류)

  • Kang, Hyeonah;Lim, Heuiseok
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.765-768
    • /
    • 2020
  • 검색 질의 연구 분야의 대부분 선행 연구는 검색 질의 주제 분류에 집중되어 있으며 질의 자체에 대한 연구자의 정성적인 판단으로 분석되었다. 이는 검색 이후 클릭 된 문서를 고려하지 않고 진행되었다는 점과 분석 주제 및 활용 데이터가 제한적이라는 것에 한계가 있다. 이에 본 연구는 국내 대형 온라인쇼핑몰의 1년간의 검색로그를 활용하여 검색 질의와 검색 이후 조회한 문서명 정보를 기반으로 토픽모델링을 수행하여 검색 질의 주제를 정의하였다. 또한 검색 행동특성에 따른 주제별 성격을 정의하기 위하여 주성분 분석을 통해 주요 변수 추출 후 각 주제별 검색 행동특성을 분석하였다. 본 연구 결과는 효과적인 검색 서비스 구축 및 검색 시스템 개발에 기여 할 것으로 기대된다. 향후 연구로는 텍스트 분류기 모델링 실험을 통해 자동 분류 시스템을 구현할 수 있을 것이다.