• Title/Summary/Keyword: 클로로필a

Search Result 307, Processing Time 0.02 seconds

Changes of Seasonal and Vertical Water Quality in Soyang and Paldang River-reservoir System, Korea (소양호와 팔당호 수질의 수직 및 계절적 변화)

  • Kim, Jong-Min;Park, Jun-Dae;Noh, Hye-Ran;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.10-20
    • /
    • 2002
  • Changes of seasonal and vertical water quality was analyzed with physico-chemical data from Soyang and Paldang river-reservoir system in Korea during the 1996 to 1998. In Soyang river-reservoir system, the water column was well stratified, which narrow epilimnion layer of 5 to 10 m depth in spring to summer enlarged gradually about 40 m depth in fall as going to times. In contrast, metalimnion layer tended to be narrow during the same period. Water temperature of hypolimnion was maintained about $5^{\circ}C$ continuously throughout the year. DO of the epilimnion layer was supersaturated from spring to summer, however, it was decreased to 75% at the epilimnion layer and $45{\sim}50%$ at the hypolimnion layer at the late fall. The lowest conductivity of below $50\;{\mu}S/cm$ was observed at the metalimnion layer during thesummer to fall. In Paldang river-reservoir system, the water column wag well mixed layer throughout the year, although water temperature was changed seasonally from $5^{\circ}C$ in February to $28^{\circ}C$ in July. Water temperature between upper and lower layer was different about $5^{\circ}C$ from late spring (May) to early fall (September). DO was over and less saturated in upper and lower layer during the early summer to early fall, respectively. Conductivity was decreased to $90\;{\mu}S/cm$ in lower layer of below $4{\sim}5\;m$ depth during the late spring to early fall and that of upper layer of above 10 m depth decreased to about $100\;{\mu}S/cm$ during the late fall (November) and early spring (March). Retention time of Soyang river-reservoir system was much longer than that of Paldang river-reservoir system. Chlorophyll a, T-N and T-P concentration in Paldang river-reservoir system were higher than that of Soyang river-reservoir system by a factor of 2.7, 1.2 and 2.6, respectively. Algal blooming was deeply affected by the nutrients than the retention time.

Health Condition Assessment Using the Riparian Vegetation Index and Vegetation Analysis of Geumgang mainstream and Mihocheon (수변식생지수를 이용한 금강본류와 미호천의 건강성 평가 및 식생분석)

  • Lee, Seung-Yeon;Jang, Rae-Ha;Han, Young-Sub;Jung, Young-Ho;Lee, Soo-In;Lee, Eung-Pill;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.105-117
    • /
    • 2018
  • This study conducted health assessment and multivariate vegetation analysis using the riparian vegetation index in 30 sites of the Geumgang mainstream and Mihocheon to obtain practical data on the river management of the Geumgang. The result showed that the number of plant communities was 54. The flora was 75 families, 185 genera, 243 species, 2 subspecies, 21 varieties, 2 varieties, and 268 taxa. The riparian vegetation index was 38.3 (3.3; G-D1 ~ 66.7; G-U2, G-U4, and G-M3), and the health of the rivers in this area was evaluated as normal (grade C). The health of rivers was the highest in the upper stream of Geumgang mainstream and lowest in the downstream of Geumgang mainstream. The relationship between riparian vegetation index and chlorophyll-a content was low. The riparian vegetation was divided into five groups of Digitaria ciliaris colony group, Salix gracilistyla colony group, Erigeron annuus colony group, the group dominated by Humulus japonicus, Salix koreensis, Miscanthus sacchariflorus, and Phragmites japonica colonies, and the group dominated by Conyza canadensis and Echinochloa crusgalli var. echinata colonies. They had the similar health conditions. The CCA analysis showed that the environmental factors affecting the distribution of vegetation were physical factors such as vegetation area, artificial structure area, waterway area, branch width, channel width, and bank height and the biological factors such as the number of species. As such, it is necessary to maintain the health condition through continuous monitoring where the health condition is high and to apply active measures such as ecological restoration where the health condition is low.

Study on the Community Structure of Sublittoral Meiofauna in the Barents Sea in Summer 2002, Arctic Ocean (2002년 하계 북극 바렌츠해 연안지역의 중형저서생물 군집 구조에 관한 연구)

  • Lee Kang Hyun;Chung Kyung-Ho;Kang Sung-Ho;Lee Wonchoel
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.257-268
    • /
    • 2005
  • Meiofauna community was surveyed in the Arctic Ocean. Sediment samples were collected from six stations in the east Barents Sea and from five stations in Kongsfjorden, Svalbard during summer 2002. Eight taxa of meiofauna were identified in the Barents Sea. Meiofauna abundance ranged from 245 to 906 indiv.10 $cm^{-2}$ (mean 580 indiv.10 $cm^{-2}$) and total biomass varied from 23 and 404 ${\mu}gC10cm^{-2}$ (mean 184 ${\mug}C10cm^{-2}$) in the Barent Sea. Nematode predominated in meiofauna comprising $95.2\%$ of total abundance and $66.4\%$ of biomass. Copepods, polycheats and sarcomastigophonans were also dominant in the study area. Nine taxa of meiofauna were identified in Kongsfiorden. Meiofauna abundance ranged from 103 to 513 indiv.10 $cm^{-2}$ (mean 292 indiv.10 $cm^{-2}$) and biomass varied from 13 and 196{\mu}gC10\;cm^{-2}$ (mean 94{\mu}gC10\;cm^{-2}$) in the Kongsfiorden. Nematodes predominated in meiofauna, comprising $64.1\%$ of abundance and $64.3\%$ biomass. Copepods, polychaets, and kinorhyncha were also dominant in the study area. The meiofauna abundances from both the study areas well match with the previous reports from the various regions including the temperate areas. However the occurred taxa in the present study are only a half comparing with the reports from temperate zone. Meiofauna abundance, biomass, diversity index and species richness were much higher than in the coastal which were strongly affected by fresh water run off in the Barents Sea. The stations affected by chlorophyll had high abundance and biomass, but low diversity index and spices richness in Kongsfiorden.

Quality Characteristics of $Kalopanax$ $pictus$ and $Aralica$ $elata$ Shoot according to Their Salt Conditions (염장조건에 따른 엄나무와 두릅 순의 품질특성)

  • Jang, Se-Young;Kim, Sun-Hwa;Sung, Na-Hye;Yoon, Kyung-Young;Woo, Sang-Cheul;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.19 no.2
    • /
    • pp.193-200
    • /
    • 2012
  • The quality characteristics of $kalopanax$ $pictus$ and Aralica elata shoots during their preservation were investigated according to the salt conditions and storage temperatures to improve the use of the shoots. The results were as follows: the pH of $kalopanax$ $pictus$ shoots duing their storage did not changes with 10% and 12% brine at $4^{\circ}C$ and with 12% brine at $10^{\circ}C$. The pH of $Aralica$ $elata$ shoots is at $4^{\circ}C$ tended to be similar to the $kalopanax$ $pictus$ shoot and decreased at the storage temperature of $10^{\circ}C$. The salinity of the $kalopanax$ $pictus$ and $Aralica$ $elata$ shoots tended to increase during their storage and did not change significantly as their storage temperature changed. The L values of $kalopanax$ $pictus$ and $Aralica$ $elata$ shoots tended to decrease gradually during their storage, and the salt concentrations appeared high. The b value of the $kalopanax$ $pictus$ shoot tended to increase and that of the $Aralica$ $elata$ shoots, to decrease gradually. The a value tended to increase gradually but did not differ with variations in the storage temperatures and salt concentrations. The strength and the hardness of the $kalopanax$ $pictus$ and $Aralica$ $elata$ shoots tended to decreased gradually during their storage and highest in 10% brine at $4^{\circ}C$, and those of $Aralica$ $elata$ shoots were highest in 8-10% brine at $4^{\circ}C$. The Chlorophyll contents of the $kalopanax$ $pictus$ and $Aralica$ $elata$ shoots tended to decrease during their salt storage and did not change significantly as the temperatures and salt concentrations changed. Therefore, it can be concluded that the quality of $kalopanax$ $pictus$ and $Aralica$ $elata$ shoots can be maintained when the are stored in 10% brine at $4^{\circ}C$.

Removal of $^{210}Po$ and $^{234}Th$ from Seawater at the East-southern Coastal Region of Korea Peninsula in Spring (춘계 한국 동해남부 연안해역에서 해수중 $^{210}Po$$^{234}Th$의 제거)

  • LEE Haeng-Pil;YANG Han-Soeb;KIM Kee-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.332-344
    • /
    • 1996
  • The vertical profiles of the natural $^{210}Po,\;^{210}Pb\;and\;^{234}Th$, activities were measured at the upper 150 m or 200 m of water column from west-east intersection in the east-southern coastal area of the Korea Peninsula during the period from 26 to 29 April 1994 to compare the removal rates (residence time) and removal processes for $^{210}Po\;and\;^{234}Th$. At the inshore stations, the $^{210}Po$ activity was generally higher in the thermocline and its under layer than in the surface mixed layer, while represented the reversed pattern at the offshore stations. However, the $^{210}Pb$ activity decreased generally with depth. Also, the activity of $^{210}Po$ relative to its parent $^{210}Pb$ was deficient in the water column above the main thermocline, but was slightly excess or close to equilibrium in the thermocline and its under layer. The vertical profiles for the activity of $^{210}Pb$ relative to its parent $^{226}Ra$ showed the reversed pattern with the vertical variation of $^{210}Po$ excess (or deficiency). The $^{234}Th$ activity was significantly lower in the surface mixed layer and thermocline than in the deeper layer. The residence time of $^{210}Po$ ranged from 1 to 4 years at the five stations except station E8 that showed yet long residence time (approximately 10 years). The long residence time at the station E8 may resulted from the thicker surface mixed layer and subsequent the vertical mixing of $^{210}Po$ which was recycled in the lower surface mixed layer compared to at the other stations. Also, the residence time of $^{210}Po$ was shorter at the inshore stations than at the offshore stations. However, the residence time of $^{234}Th$ ranged from 52 to 74 days at all station without the significant variation, was very much shorter relative to the residence time of $^{210}Po$. The correlation between the removal rate of dissolved $^{234}Th$ and the concentration of total suspended matter (TSM) was generally positive. Therefore, it seems that the major route of the removal mechanism of $^{234}Th$ from seawater in the surface mixed layer is via adsorption onto suspended particle surfaces (most likely inorganic particles) and subsequent settling to the bottom layer. Between the removal rate of dissolved $^{210}Po$ and the concentration of chlorophyll-a was positively good correlation. Consequently, most likely the removal of $^{210}Po$ may be occurred by uptake to organisms (mainly such as planktonic debris or fecal pellets) and subsequent settling.

  • PDF

Changes in Quality of Lettuce During Storage by Immersion-Type Hydrocooling (침지식 냉수냉각에 의한 상치의 저장중 품질변화)

  • Jeong, Jin-Woong;Kim, Byeong-Sam;Kim, Oni-Woung;Nahmgung, Bae;Park, Kee-Jai
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.537-545
    • /
    • 1995
  • Quality changes of lettuce were studied during storage to investigate the efficiency, cooling properties and the washing and storage effects of immersion-type hydrocooling. As a result of plotting the nondimensionalized lettuce temperature versus cooling time, its cooling rate coefficient was shown to be $-0.365\;min^{-1}{\sim}-0.255\;min^{-1}\;(R^2=0.99{\sim}0.88)$. Rate of weight loss was not significantly (p>0.05) different between lettuces with various treatment conditions during storage at $5^{\circ}C$. However, during storage at $15^{\circ}C$, weight loss of hydrocooled lettuce was lower than that of non-treated lettuce after from 10 to 15 days. Especially, The lettuce packed with PE was more effective than that packed with try in terms of packing condition after hydrocooling. Lettuce pretreated with sterilizing agent, packed with PE vinyl film, removed residual water after hydrocooling had lower decaying rate than any other lettuces. Changes of L and b values in hydrocooled lettuce were slower than those of non-treated one. During changes of chlorophyll content, the initial value, $115.7{\sim}147.3\;mg%$ was decreased to $50{\sim}60%$ after 25 days of storage at $5^{\circ}C$ and within 15 days of storage at $15^{\circ}C$. It could be presumed that the addition of sterilizing agent reduced the initial level of overall total and coliform count and its growth rate during storage. The respiration rate of hydrocooled lettuce at $5^{\circ}C$ was $23.95\;mg{\cdot}CO_2/kg\;hr$, which is 10% of those of non-treated lettuce.

  • PDF

Mycorrhizal colonization effects on C metabolism in relation to drought-tolerance of perennial ryegrass (페레니얼 라이그라스에서 Mycorrhiza 접종이 탄수화물대사와 가뭄스트레스 저항성에 미치는 영향)

  • Lee, Bok-Rye;Jung, Woo-Jin;Kim, Dae-Hyun;Kim, Kil-Yong;Shon, Bo-Kyoon;Kim, Tae-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.232-242
    • /
    • 2002
  • To investigate the effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices) colonization on drought-stress tolerance, leaf water potential, chlorophyll concentration, P content and carbohydrate composition were examined in perennial ryegrass (Lolium perenne L.) plants exposed to drought-stressed or well-watered conditions. Drought stress significantly decreased leaf water potential, P content and leaf growth. These drought-induced damages were moderated by mycorrhizal colonization. Drought stress decreased the concentration of soluble sugars in shoots. AM plants had a higher foliar soluble sugar than non-AM plants under drought stress condition. Drought stress depressed the accumulation of starch and fructan in shoots, but stimulated in roots. Under drought-stressed condition, starch concentration in roots was higher in non-AM plants than in AM plants. Fructan was the largest pool of carbohydrates, showing the highest initial concentration and the highest net increase for 28 days of treatment. Drought stress slightly decreased fructan concentration in shoots, but remarkably increased in roots. Under drought-stressed condition, fructan concentrations in non-AM and AM shoots at day 28 were 18.7% and 13.3% lower than the corresponding values measured at well-watered plants. However, in the roots, fructan accumulation caused by drought was lessen 13.6% by mycorrhizal colonization. The results obtained suggest that mycorrhizal colonization improves drought tolerance of the host plants by maintaining higher leaf water status and P status, and by retaining more foliar soluble sugars.