• 제목/요약/키워드: 클러스터링

검색결과 2,424건 처리시간 0.046초

Gath-Geva 알고리즘을 이용한 유전자 발현 데이터의 분석 (Analysis of Gene Expression Data Using Gath-Geva Algorithm)

  • 박한샘;유시호;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.253-255
    • /
    • 2004
  • 다량의 유전자 발현 정보를 담고 있는 DNA 마이크로어레이 기술의 발달로 인해 대량의 생물정보를 한번의 실험을 통해 분석할 수 있게 되었다. 유전자 발현 데이터를 분석하는 방법 중 하나인 클러스터링은 비슷한 기능을 가진 유전자들을 그룹별로 묶어서 그룹 레의 유전자들의 기능을 밝히거나 미지의 유전자를 분석하는데 이용되고 있다 본 논문에서는 유전자 발현 데이터를 클러스터링 하여 그로부터 유전 정보를 찾아내기 위한 방법으로 GG (Gath-Geva) 알고리즘을 제시한다. 퍼지 클러스터링 알고리즘중 하나인 GG 알고리즘은 대표적인 퍼지 클러스터링 방법인 퍼지 c-means 와 GK (Gustafson-Kessel) 알고리즘을 개선한 것으로. 차원이 크고 분포가 애매하여 클러스터링이 어려운 유전자 발현 데이터의 클러스터링에 적합한 알고리즘이다. 혈청(Serum) 유전자 데이터와 효모(Yeast) 세포주기 데이터를 CG 알고리즘 이용해 클러스터링 해 보고, 그 결과를 퍼지 c-means 알고리즘, GK알고리즘과 비교해 본 결과, GG 알고리즘이 유전자 발현 데이터의 클러스터링에 더 적합함을 확인하였다.

  • PDF

블로그 공간에서의 링크 기반 클러스터링 방안 (Link-Based Clustering in Blogosphere)

  • 송석순;윤석호;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.372-374
    • /
    • 2009
  • 본 논문에서는 블로그 공간에 존재하는 블로거와 포스트들을 링크 기반 클러스터링을 통해 클러스터링하고자 한다. 먼저 기존 링크 기반 클러스터링 방안 중에서 블로거와 포스트들을 클러스터링하는데 가장 적합한 LinkClus를 선택한다. LinkClus를 블로그 공간에 적용하기 위해서 블로거와 포스트를 각각 하나의 타입으로, 블로거와 포스트 사이의 액션을 링크로 사상한다. 정확한 클러스터링을 위하여 클러스터의 대상을 여러 주제에 관심을 가지는 블로거 대신 하나의 주제만을 나타내는 폴더로 한다. 또한 노이즈의 발생 가능성을 높이는 링크가 아주 적은 블로거와 포스트를 클러스터링 과정에서 제외 시킨다. 실험을 통하여 제안하는 방안을 이용한 클러스터링 결과가 내용적으로도 유사한지 검증한다.

공간데이타 마이닝을 위한 효율적인 그리드 셀 기반 공간 클러스터링 알고리즘 (An Efficient Grid Cell Based Spatial Clustering Algorithm for Spatial Data Mining)

  • 문상호;이동규;서영덕
    • 정보처리학회논문지D
    • /
    • 제10D권4호
    • /
    • pp.567-576
    • /
    • 2003
  • 대용량의 공간데이터베이스로부터 암시적이고 유용한 지식을 자동적으로 추출하는 공간데이터 마이닝은 데이타 양이 급격히 증가하면서 필요성이 더욱 증대되고 있다. 공간데이터 마이닝에서 데이타를 분석하여 유사한 그룹으로 분류하는 공간 클러스터링은 매우 중요한 분야이다. 기존 연구에서 공간 클러스터링을 위한 여러 가지 알고리즘들이 제시되었지만, 다음과 같은 문제점들이 있다. 먼저 클러스터링을 위하여 객체들 간의 거리론 기반으로 하므로 데이타 양이 많아질수록 계산 비용이 커진다. 또한, 메모리 상주 데이타를 대상으로 하므로 대용량의 데이타인 경우에 효율이 떨어진다. 본 논문에서는 공간데이터 마이닝을 위하여 그리드 셀을 기반으로 한 효율적인 공간 클러스터링 방법을 제시한다. 이 클러스터링에서는 기존 공간 클러스터링 기법들의 문제점을 해결하는데 중점을 둔다. 세부적으로 공간 클러스터링의 효율성을 높이기 위하여 클러스터링시에 발생하는 비용(계산량)을 감소시키는 것이다. 이를 위해서 공간지역성을 보장하는 대표적인 공간분할 방법인 그리드 셀을 기반으로 한 공간 클러스터링 기법을 제시한다.

K-Means 클러스터링에서 초기 중심 선정 방법 비교 (Comparison of Initial Seeds Methods for K-Means Clustering)

  • 이신원
    • 인터넷정보학회논문지
    • /
    • 제13권6호
    • /
    • pp.1-8
    • /
    • 2012
  • 클러스터링 기법은 데이터에 대한 특성에 따라 몇 개의 클러스터로 군집화 하는 계층적 클러스터링이나 분할 클러스터링 등 다양한 기법이 있는데 그 중에서 K-Means 알고리즘은 구현이 쉬우나 할당-재계산에 소요되는 시간이 증가하게 된다. 또한 초기 클러스터 중심이 임의로 설정되기 때문에 클러스터링 결과가 편차가 심하다. 본 논문에서는 클러스터링에 소요되는 시간을 줄이고 안정적인 클러스터링을 하기 위해 초기 클러스터 중심 선정 방법을 삼각형 높이를 이용하는 방법을 제안하고 비교 실험해 봄으로서 할당-재계산 횟수를 줄이고 전체 클러스터링 시간을 감소시키고자 한다. 실험결과로 평균 총소요시간을 보면 최대평균거리를 이용하는 방법은 기존 방법에 비해서 17.9% 감소하였고, 제안한 방법은 38.4% 감소하였다.

지식 분류의 자동화를 위한 클러스터링 모형 연구 (Development of a Clustering Model for Automatic Knowledge Classification)

  • 정영미;이재윤
    • 정보관리학회지
    • /
    • 제18권2호
    • /
    • pp.203-230
    • /
    • 2001
  • 본 연구에서는 문헌을 기반으로 한 지식의 자동분류를 위해 최적의 클러스터링 모형을 제시하고자 하였다. 클러스터링 실험을 위해서 신문기사 실험집단과 학술논문 초록 실험집단을 구축하였고, 분류 성능 평가 척도인 WACS를 개발하였다. 분류자질로 사용한 용어의 집합은 다양한 자질 축소 기준을 적용하여 생성하였으며, 다양한 용어 가중치를 사용하였다. 유사계수 공식으로는 코사인 계수와 자카드 계수를 적용하였으며, 클러스터링 알고리즘으로는 비계층적 기법인 완전연결 기법과 계층적 기법인 K-means기법을 각각 사용하였다. 실험 결과 신문기사 원문 집단에서의 성능이 좋았으며, 완전연결 기법의 성능이 K-means 기법보다 높게 나타났다. 역문헌빈도의 적용은 완전연결 클러스터링에서는 긍정적인 효과가 나타났으나, K-means 클러스터링에서는 그렇지 못했다. 분류자질은 전체의 7.66%만 사용하였을 경우에도 성능 저하가 크지 않았으며, K-means 클러스터링에서는 오히려 성능 향상 효과가 있었다.

  • PDF

대용량 네트워크 압축 기반 클러스터링 알고리즘 개발 (Development of Clustering Algorithm based on Massive Network Compression)

  • 서동민;유석종;이민호
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2016년도 춘계 종합학술대회 논문집
    • /
    • pp.53-54
    • /
    • 2016
  • 빅데이터란 대용량 데이터 활용 및 분석을 통해 가치 있는 정보를 추출하고, 이를 바탕으로 대응 방안 도출 또는 변화를 예측하는 기술을 의미한다. 그리고 빅데이터 분석에 활용되는 데이터인 페이스북과 같은 소셜 데이터, 유전자 발현과 같은 바이오 데이터, 항공망과 같은 지리정보 데이터들은 대용량 네트워크로 구성되어 있다. 네트워크 클러스터링은 서로 유사한 특성을 갖는 네트워크 내의 데이터들을 동일한 클러스터로 묶는 기법으로 네트워크 데이터를 분석하고 그 특성을 파악하는데 폭넓게 사용된다. 최근 빅데이터가 다양한 분야에서 활용되면서 방대한 양의 네트워크 데이터가 생성되고 있고, 이에 따라서 대용량 네트워크 데이터를 효율적으로 처리하는 클러스터링 기법의 중요성이 증가하고 있다. MCL(Markov Clustering) 알고리즘은 플로우 기반 무감독(unsupervised) 클러스터링 알고리즘으로 확장성이 우수해 다양한 분야에서 활용되고 있다. 하지만, MCL은 대용량 네트워크에 대해서는 많은 클러스터링 연산을 요구하며 너무 많은 클러스터를 생성하는 문제를 갖는다. 본 논문에서는 네트워크 압축을 기반으로 한 클러스터링 알고리즘을 제안함으로써 MCL보다 클러스터링 속도와 정확도를 향상시켰다. 또한, 희소행렬을 효율적으로 저장하는 CSC(Compressed Sparse Column) 자료구조와 MapReduce 기법을 제안한 클러스터링 알고리즘에 적용함으로써 대용량 네트워크에 대한 클러스터링 속도를 향상시켰다.

  • PDF

다목적 유전자 알고리즘을 이용한문서 클러스터링 (The Document Clustering using Multi-Objective Genetic Algorithms)

  • 이정송;박순철
    • 한국산업정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.57-64
    • /
    • 2012
  • 본 논문에서는 텍스트 마이닝 분야에서 중요한 부분을 차지하고 있는 문서 클러스터링을 위하여 다목적 유전자 알고리즘을 제안한다. 문서 클러스터링에 있어 중요한 요소 중 하나는 유사한 문서를 그룹화 하는 클러스터링 알고리즘이다. 지금까지 문서 클러스터링에는 k-means 클러스터링, 유전자 알고리즘 등을 사용한 연구가 많이 진행되고 있다. 하지만 k-means 클러스터링은 초기 클러스터 중심에 따라 성능 차이가 크며 유전자 알고리즘은 목적함수에 따라 지역 최적해에 쉽게 빠지는 단점을 갖고 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 다목적 유전자 알고리즘을 문서 클러스터링에 적용해 보고, 기존의 알고리즘과 정확성을 비교 및 분석한다. 성능 시험을 통해 k-means 클러스터링(약 20%)과 기존의 유전자 알고리즘(약 17%)을 비교할 때 본 논문에서 제안한 다목적 유전자 알고리즘의 성능이 월등하게 향상됨을 보인다.

점진적 개념학습의 클러스터 응집도 개선 (The Study on Improvement of Cohesion of Clustering in Incremental Concept Learning)

  • 백혜정;박영택
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.297-304
    • /
    • 2003
  • 요즘, 인터넷 등장 이후 폭발적으로 증대되는 웹 정보를 효율적으로 사용하기 위한 시스템들이 요구되고 있다. 이러한 요구를 해결하기 위해 개발된 시스템들은 서비스 정보의 질을 향상시키기 위하여 클러스터링 기법을 이용하고 있다. 클러스터링은 무질서한 데이터들의 상호 연관관계를 정의하고 이를 통하여 보다 체계적으로 데이터를 군집화하는 것이다. 클러스터링을 이용한 시스템은 비슷한 내용을 묶어 사용자에게 제공함으로, 사용자는 보다 효율적으로 정보를 파악할 수 있다. 그래서 이전 연구에서 대량의 데이터를 효율적으로 클러스터링 하기 위하여 통합 클러스터링 방식을 제안하였다. 이 방식은 COBWEB 알고리즘을 이용하여 초기 클러스터를 생성한 후 Etzioni 알고리즘을 이용하여 클러스터링을 생성하는 방식이다. 본 논문은 이러한 기존의 통합 클러스터링 방식의 정확성과 효율성을 높이기 위하여, 다음 두 가지 방식을 제안한다. 첫째, 클러스터할 데이터의 속성의 가중치클 고려한 클러스터링 방식을 제안한다. 둘째, 기존의 클러스터링 방식의 효율성을 지원하기 위하여, 초기 클러스터를 생성하는 평가 함수를 재정의한다. 본 논문에서 제안하는 클러스터링 방식은 방대한 양의 데이터를 효율적으로 처리 할 수 있으며 데이터의 입력 순서의 의존도를 줄여, 데이터를 효과적으로 클러스터, 양질의 사용자 프로파일 구축에 도움을 주게 된다.

사전정보 활용을 위한 관련 규칙 기반의 Ensemble 클러스터링 (Association-rule based ensemble clustering for adopting a prior knowledge)

  • 고송;김대원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.67-70
    • /
    • 2007
  • 본 논문은 클러스터링 문제에서 사전 정보에 대한 활용의 효율을 개선시킬 수 있는 방법을 제안한다. 클러스터링에서 사전 정보의 존재 시 이의 활용은 성능을 개선시킬 수 있는 계기가 될 수 있으므로 그의 활용 폭을 늘리기 위한 방법으로 다양한 사용 방법의 적용인 semi-supervised 클러스터링 앙상블을 제안한다. 사전 정보의 활용 방법의 방안으로써 association-rule의 개념을 접목하였다. 클러스터 수를 다르게 적용하더라도 패턴간의 유사도가 높으면 같은 그룹에 속할 확률은 높아진다. 다양한 초기화에 따른 클러스터의 동작은 사전 정보의 활용을 다양화 시키게 되며, 사전 정보에 충족하는 각각의 클러스터 결과를 제시한다. 결과를 총 취합하여 association-matrix를 형성하면 패턴간의 유사도를 얻을 수 있으며 결국 association-matrix를 통해 클러스터링 할 수 있는 방법을 제시한다.

  • PDF

정보병목기법에 기반한 유전자 발현 데이터의 이중 클러스터링 (Double Clustering of Gene Expression Data Based on the Information Bottleneck Method)

  • 김병희;황규백;장정호;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.362-364
    • /
    • 2003
  • 기능 유전체학에서 클러스터링 기법은 고차원의 마이크로 어레이 데이터 분석을 위한 주된 도구 중의 하나이다. 본 논문에서는 정보병목(information bottleneck)기법 기반의 이중 클러스터링에 의한, 유전자 발현 데이터의 계층적 병합방식 클러스터링 기법을 제안한다. 정보병목기법은, 두 랜덤변수의 결합확률분포가 주어진 경우 두 변수의 상호 정보량을 최대한 보존하면서 한 변수를 압축하는 기법이며, 두 변수를 차례로 압축하는 것이 이중 클러스터링이다. 실제 마이크로 어레이 데이터인 NC160 데이터(암세포 내 유전자 발현 데이터)에 대한 실험에서, 먼저 유전자를 그 발현패턴에 따라 클러스터링 한 후 이를 이용하여 표본들을 클러스터링하고 그 성능을 다각도로 분석하였다. 상호 정보량과 유전자 및 표본 클러스터 수와 엔트로피 척도에 의한 성능을 검토해 본 결과, 표본이 추출 조직에 따라 구분 가능할 것이라는 가정을 검증할 수 있었으며, 적절한 클러스터의 수를 결정할 수 있는 임계점의 기준을 설정할 수 있었다.

  • PDF