• 제목/요약/키워드: 클라우드시스템

검색결과 1,295건 처리시간 0.029초

가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향 (Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities)

  • 박명남;김병권;홍기훈;신동일
    • 한국가스학회지
    • /
    • 제26권4호
    • /
    • pp.41-57
    • /
    • 2022
  • 기후변화 대응에 따른 전세계적인 탄소중립 이행에 대한 요구는 수출주도형 경제구조와 온실가스 수출국가로 분류되어 있는 우리나라를 비롯한 일부 국가들에게 탄소 무역장벽 대응방안을 마련해야 하는 상황에 놓여있다. 따라서, 탄소중립 이행 모델의 적용을 위해 예측 가능한 방법 중에 하나인 디지털 전환을 앞당겨 도입해야 한다. 주요산업 중 하나인, 첨단제조산업에서 쓰이는 산업용 가스 제조시설과 친환경 에너지로 부각되고 있는 수소 가스시설에 디지털 기술을 적용하여, 이상감지 및 진단 서비스를 클라우드 기반의 조업지식이 포함된 예측진단 모니터링 기술 동향을 소개한다. 단순히 실시간 설비 상태를 모니터링하는 것이 아닌, 최적화와 증강현실 기술, 그리고 IoT 와 AI 지식 추론 등을 통해 이상진단 예측 모니터링의 구축 방향을 확인하고, 탄소중립 이행의 사각지대에 놓여 있는, 중소·중견 기업의 경제성과 효율성이 부합되는, 엔지니어링 도메인의 합의된 지식과 예측진단 모니터링 등의 기술 보급 가능함을 살펴 볼 수 있다. 최고 수준의 ICT 기술을 바탕으로 탄소배출 무역장벽에 따른 대응 방안을 모색하는 하나의 방안으로 활용되길 바라며, 해당 기술의 도입을 통해, 탄소중립 이행에 따른 중소·중견기업의 마중물이 될 것이다.

토픽 모델링을 활용한 코로나19 초기 생활체육 이슈 분석 (Trend Analysis of Sports for All-Related Issues in Early Stage of COVID-19 Using Topic Modeling)

  • 정연길;서수민;강현민
    • 지능정보연구
    • /
    • 제28권3호
    • /
    • pp.57-79
    • /
    • 2022
  • 지난 2019년 12월 시작된 코로나19는 정치, 경제, 사회, 문화 등 우리 삶의 전반에 많은 영향을 끼쳐 왔으며, 스포츠, 공연 예술 등의 분야 역시 이로 인해 큰 폭으로 활동이 위축되었다. 스포츠 분야의 경우 참여스포츠를 대표하는 생활체육 분야에서의 변화가 특히 크게 나타났으며, 헬스장, 탁구장, 배드민턴 동호회 등 국민 삶과 밀접한 장소에서의 확진자 발생은 코로나19의 확산에 대한 사회적 공포감을 증폭시키는 원인이 되기도 하였다. 이에 본 연구에서는 코로나19가 최초 확산한 시기의 생활체육 관련 국내 언론 기사를 분석하여, 코로나19 사태로 인해 생활체육 분야에서 어떤 이슈들이 현장에서 등장하고 있으며 어떠한 논의들이 이루어지고 있는지 살펴본다. 구체적으로 본 연구는 국내 대표적인 포털 뉴스 사이트로부터 생활체육과 관련된 코로나19 이슈를 다루고 있는 뉴스 기사를 수집한 후, 이에 대한 토픽 모델링(Topic Modeling) 분석을 통해 코로나19 환경에서의 주요 생활체육 이슈를 파악하였다. 분석을 통해 체육시설 코로나 발생, 체육활동 지원, 생활체육활동 변화 등의 의미있는 이슈를 발견하였으며, 이들 주요 이슈에 대한 워드 클라우드(Wordcloud) 분석을 통해 이슈를 시각적으로 이해하고 시간의 흐름에 따라 이러한 이슈가 변화하는 양상을 확인하였다.

TeGCN:씬파일러 신용평가를 위한 트랜스포머 임베딩 기반 그래프 신경망 구조 개발 (TeGCN:Transformer-embedded Graph Neural Network for Thin-filer default prediction)

  • 김성수;배준호;이주현;정희주;김희웅
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.419-437
    • /
    • 2023
  • 국내 씬파일러(Thin Filer)의 수가 1200만명을 넘어서며, 금융 업계에서 씬파일러의 신용을 정확히 평가하여 우량고객을 선별해 대출을 공급하는 시도가 많아지고 있다. 특히, 차주의 신용정보에 존재하는 비선형성을 반영하여 채무불이행을 예측하기 위해서 다양한 머신러닝 알고리즘을 활용한 연구가 진행되고 있다. 그 중 그래프 신경망 구조(Graph Neural Network)는 일반적인 신용정보 외에 대출자 간의 네트워크 정보를 반영할 수 있다는 점에서 데이터가 부족한 씬파일러의 채무 불이행 예측에서 주목할 만하다. 그러나, 그래프 신경망을 활용한 기존의 연구들은 신용정보에 존재하는 다양한 범주형 변수를 적절히 처리하지 못했다는 한계가 있었다. 이에 본 연구는 범주형 변수의 맥락적 정보를 추출할 수 있는 트랜스포머 메커니즘(Transformer mechanism)과 대출자 간 네트워크 정보를 반영할 수 있는 그래프 합성곱 신경망(Graph Convolutional Network)를 결합하여 효과적으로 씬파일러의 채무 불이행 예측이 가능한 TeGCN (Transformer embedded Graph Convolutional Network)를 제안한다. TeGCN는 일반 대출자 데이터셋과 씬파일러 데이터셋에 대하여 모두 베이스 라인 모델 대비 높은 성능을 보였으며, 특히 씬파일러 채무 불이행 예측에 우수한 성능을 달성했다. 본 연구는 범주형 변수가 많은 신용정보와 데이터가 부족한 씬파일러의 특성에 적합한 모델 구조를 결합하여 높은 채무 불이행 예측 성능을 달성했다는 시사점이 있다. 이는 씬파일러의 금융소외문제를 해결하고 금융업계에서 씬파일러를 대상으로 추가적인 수익을 창출하는데 기여할 수 있을 것이다.

OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현 (Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA)

  • 김지형
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.189-196
    • /
    • 2023
  • 4차 산업혁명을 주도하는 기술로서 IoT, 빅데이터, 인공지능, CPS 등이 발전하면서 산업 현장에서 생산성과 효율성을 향상시키기 위한 디지털 트윈의 중요성이 부각되고 있다. 디지털 트윈은 실제 물리적 객체들의 디지털 복제로서, 객체의 속성과 상태를 유지하며 작동하는 가상 모델이다. CPS는 사이버 세계와 물리 세계의 상호작용을 위한 시스템으로, 디지털 트윈은 CPS의 고급형 기술로 볼 수 있다. 디지털 트윈은 AI, XR, 5G 등 다양한 요소 기술의 등장으로 구현 속도가 가속화되었다. 센서 기술의 발전과 IoT, 인공지능, 빅데이터, 클라우드 등의 관련 기술 발전으로 디지털 트윈 시장이 성장하고 있다. 이에 따라 기업들은 비즈니스 인텔리전스와 관련된 솔루션을 도입하여 프로세스 최적화, 비용 효율성, 생산성을 향상시키는 경향이 있다. 본 연구에서는 디지털 트윈 기술과 CPS를 결합하여 이기종 로봇의 실시간 3D 디지털 트윈을 구축하는 것이 목표이다. 이를 위해 유비씨의 FLEXING CPS와 FLEXING EDGE를 활용하여 데이터 수집과 관리를 수행한다. 프로젝트 구성원은 프로토콜 설정, 데이터 수집 및 전달, 3D 디지털 트윈 시뮬레이션을 담당한다. 이를 통해 CPS와 디지털 트윈을 통합한 기술의 가능성을 확인하고, 산업 현장에서 생산성과 효율성을 향상시킬 수 있다.

토마토 위치 및 자세 추정을 위한 데이터 증대기법 (Data Augmentation for Tomato Detection and Pose Estimation)

  • 장민호;황영배
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.44-55
    • /
    • 2022
  • 농업 관련 방송 콘텐츠에서 과일에 대한 자동적인 정보 제공을 위해서 대상 과일의 인스턴스 영상 분할이 요구된다. 또한, 해당 과일에 대한 3차원 자세에 대한 정보 제공도 의미있게 사용될 수 있다. 본 논문에서는 영상 콘텐츠에서 토마토에 대한 정보를 제공하는 연구를 다룬다. 인스턴스 영상 분할 기법을 학습하기 위해서는 다량의 데이터가 필요하지만 충분한 토마토 학습데이터를 얻기는 힘들다. 따라서 적은 양의 실사 영상을 바탕으로 데이터 증대기법을 통해 학습 데이터를 생성하였다. 실사 영상만을 통한 학습 결과 정확도에 비해서, 전경과 배경을 분리해서 만들어진 합성 영상을 통해 학습한 결과, 기존 대비 성능이 향상되는 것을 확인하였다. 영상 전처리 기법들을 활용해서 만들어진 영상을 사용한 데이터 증대 영상의 학습 결과, 전경과 배경을 분리한 합성 영상보다 높은 성능을 얻는 것을 확인하였다. 객체 검출 후 자세 추정을 하기 위해 RGB-D 카메라를 이용하여 포인트 클라우드를 획득하였고 최소제곱법을 이용한 실린더 피팅을 진행하였고, 실린더의 축 방향을 통해 토마토 자세를 추정하였다. 우리는 다양한 실험을 통해서 대상 객체에 대한 검출, 인스턴스 영상 분할, 실린더 피팅의 결과가 의미있게 나타난다는 것을 보였다.

한국농수산대학 재학생의 학교생활 감성 분석 및 영농의지에 관한 연구 (A Study on the Sensibility Analysis of School Life and the Will to Farming of Students at Korea National College of Agricultural and Fisheries)

  • 주진수;이소영;김종숙;신용광;박노복
    • 현장농수산연구지
    • /
    • 제21권2호
    • /
    • pp.103-114
    • /
    • 2019
  • 본 연구에서는 한농대에 재학 중인 3학년 학생을 대상으로 대학생활 선호도 및 졸업 후 영농의지를 파악하기 위하여 설문조사를 실시하였다. 연구 분석에는 구조화되지 않은 데이터의 분석 기법으로 오피니언 마이닝과 텍스트 마이닝 기법을 이용하였으며, 텍스트 마이닝의 결과는 워드 클라우드로 시각화하여 정보를 추출하였다. 또한 감성분석 결과를 이용하여 졸업 후 농사일을 하려는 학생들의 영농의지에 대한 통계적 분석을 하였다. 대학생활 호감도 조사는 대학 이미지, 자기 역량, 기숙사, 교육시스템, 미래 비전 등 5개 분야에 전체 10개 항목에 대하여 이루어졌다. 감성 분석을 위한 긍·부정 사전은 수집된 응답지에서 긍정과 부정의 감정을 분류하여 긍정어 사전과 부정어 사전을 각각 만들어 분석에 이용하였다. 분석 결과 10개 평가항목 가운데 대학 지원 당시의 '대학 이미지', 10년 후의 '자기 모습' 항목은 70% 이상, '자기 역량'과 '현재의 한농대' 항목은 60% 이상의 긍정적 감정을 나타냈다. 반면 '대학 기숙사' '교육과정' '장기현장실습' '한국 농업의 미래' 항목에 대해서는 긍정적 감성보다 부정적 감성이 높게 나타났다. 성별, 영농기반, 입학 동기에 따른 영농의지 차이의 교차 분석에서는 성별, 입학 동기에 따른 영농의지는 통계적으로 유의미한 결과가 나타났으나, 영농기반에서는 유의미하지 않은 결과가 나타났다. 또한 영농의지에 대한 이항 로지스틱 회귀분석에서는 통계적으로 유의미한 변수는 '입학 동기'로 파악되었으며, 본인의 의지로 입학한 학생일수록 영농의지가 형성될 확률이 높게 나타났다.

무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘 (Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores)

  • 최영준;나지영;안준호
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.73-80
    • /
    • 2023
  • 최근 최저시급의 가파른 인상으로 인건비에 대한 부담이 늘어남과 함께 코로나19의 여파로 무인 상점의 점유율이 높아지고 있는 추세이다. 그로 인해 무인 점포를 타겟으로 하는 도난 범죄들도 같이 늘어나고 있어 이러한 도난 사고를 방지하기 위해 Just-Walk-Out 시스템을 도입하고 고비용의 LiDAR 센서, 가중치 센서 등을 사용하거나 수동으로 지속적인 CCTV 감시를 통해서 확인하고 있다. 하지만 이런 고가의 센서를 많이 사용할수록 점포 운영에 있어 비용 부담이 늘어나게 되고, CCTV 확인은 관리자가 24시간 내내 감시하기 어려워서 사용이 제한적이다. 본 연구에서는 이런 센서들이나 사람에 의지하는 부분을 해결할 수 있고 무인점포에서 사용할 수 있는 저비용으로 도난 등의 이상행동을 하는 고객을 탐지하여 클라우드 기반의 알림을 제공하는 인공지능 영상 처리 융합 알고리즘을 제안하고자 한다. 또한 본 연구에서는 mediapipe를 이용한 모션캡쳐, YOLO를 이용한 객체탐지 그리고 융합 알고리즘을 통해 무인 점포에서 수집한 행동 패턴 데이터를 바탕으로 각 알고리즘들에 대한 정확도를 확인하며 다양한 상황 실험을 통해 융합 알고리즘의 성능을 증명했다.

Development of Metrics to Measure Reusability Quality of AIaaS

  • Eun-Sook Cho
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.147-153
    • /
    • 2023
  • 인공지능 기술의 전 산업 분야로 확산되면서 기존 SaaS에 인공지능 서비스가 탑재된 AIaaS가 등장하고 있다. 특히 비IT 분야 기업들에서는 소프트웨어 전문가의 부재, 빅 데이터 모델 훈련의 어려움, 다양한 형태의 데이터들에 대한 수집 및 분석에 대한 어려움 등을 겪고 있다. AIaaS는 인공지능 소프트웨어 개발에 필요한 다양한 IT 자원들 뿐만 아니라 인공지능 소프트웨어에 필요한 기능들을 서비스 형태로 제공함으로써 사용자들에게는 보다 쉽고 경제적으로 시스템을 구축할 수 있게 한다. 따라서 이러한 클라우드 기반의 AIaaS 서비스에 대한 수요와 공급은 점점 급증할 것이다. 그런데 이처럼 AIaaS에 대한 수요와 공급이 증가함에 따라 요구되는 것이 AIaaS에서 제공하는 서비스들의 품질이 중요한 요소가 된다. 그러나, 현재 이를 측정하기 위한 포괄적이고 실용적인 품질 평가 메트릭에 대한 연구가 미흡하다. 따라서 본 논문에서는 AIaaS의 서비스 품질 측정 요소 중 재사용성 평가를 위해 AIaaS가 갖는 특징인 구현성, 편리성, 효율성, 접근성을 기반으로 재사용성 측정에 필요한 4가지 메트릭인 사용성, 교체성, 확장성, 홍보성 메트릭을 개발하여 제안한다. 제안된 메트릭은 AIaaS에서 제공하는 서비스들이 향후 잠재된 사용자들에게 얼마나 재사용할 수 있는지를 예측하는 도구로 사용될 수 있다.

쿠버네티스 환경에서 컨테이너 워크플로의 실행 시간 개선을 위한 컨테이너 재시작 감소 기법 (Technique to Reduce Container Restart for Improving Execution Time of Container Workflow in Kubernetes Environments)

  • 강태신;유헌창
    • 정보처리학회 논문지
    • /
    • 제13권3호
    • /
    • pp.91-101
    • /
    • 2024
  • 데이터 집약적이고 메모리 변동성이 높은 워크플로의 이식성 보장을 위해 컨테이너 가상화 기술이 사용되고 있다. 그리고 쿠버네티스는 이러한 컨테이너 애플리케이션들을 관리하기 위한 오케스트레이션 도구로써 사실상 표준으로 사용되고 있다. 클라우드 사용자는 리소스 부족으로 인한 컨테이너 재시작을 방지하기 위해 컨테이너 애플리케이션을 오버프로비저닝하는 경향이 있다. 그러나 과도한 오버프로비저닝은 CPU, 메모리 등 시스템 리소스의 사용량을 낮아지게 만든다. 이 문제를 해결하기 위해 컨테이너 리소스를 초과 사용하는 방식이 널리 사용되고 있으나, 지나친 메모리 리소스 초과 사용은 노드의 메모리 부족으로 인해 연쇄적인 컨테이너 재시작을 유발할 수 있다. 컨테이너 재시작 발생 시 작업을 처음부터 다시 시작해야 하므로 많은 상태저장 애플리케이션이 포함된 메모리 변동성이 높은 컨테이너에 큰 오버헤드를 유발할 수 있다. 본 논문은 쿠버네티스 환경에서 메모리 초과 사용 시 컨테이너 재시작을 완화하는 기법을 제안한다. 메모리 사용량이 많은 노드에서 메모리 할당을 요청할 가능성이 큰 컨테이너를 식별하고 이러한 컨테이너를 일시정지한다. 컨테이너의 CPU 사용량을 크게 줄이면 컨테이너가 일시정지하는 상태와 유사한 효과를 얻을 수 있다. 해당 노드의 메모리 사용량이 개선된 것으로 판단되면 컨테이너의 일시정지를 해제한다. 제안기법을 적용하여 쿠버네티스 환경에서 메모리 변동성이 높은 워크플로를 구동한 경우 제안기법을 사용하지 않았을 때에 비해 컨테이너의 재시작 횟수가 평균 40%, 최대 58% 감소하였다. 그리고 컨테이너 재시작 횟수 감소로 인해 컨테이너 워크플로의 총 실행 시간이 평균 7%, 최대 13% 단축되었다.

조경산업 관점에서 4차 산업혁명 기술의 탐색 (Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective)

  • 최자호;서주환
    • 한국조경학회지
    • /
    • 제47권2호
    • /
    • pp.59-75
    • /
    • 2019
  • 본 연구는 조경산업의 관점에서 4차 산업혁명 기술을 탐색하여, 선순환적 가치증대에 필요한 기초자료를 제공하고자 수행하였다. 4차 산업혁명, 조경산업과 도시재생의 특성 등을 고찰하고, 체계적 연구에 적합한 기술 분류 체계를 틀로 선정하는 등 방법론을 설정하여 연구하였다. 먼저, 조경산업의 선순환적 가치증대에 활용이 가능한 디지털 데이터 기반의 4차 산업혁명 기술을 선별하였다. '요소기술 수준'에서 '핵심기술'인 사물인터넷, 클라우드 컴퓨팅, 빅데이터, 인공지능, 로봇, '주변기술'인 가상 증강현실, 드론, 3D 4D 프린팅, 3D 스캐닝이 디지털 데이터 기반의 4차 산업혁명 기술로 조명되었다. 조경산업에 특화하여 '트렌드 수준'으로 응용하면 선순환적 가치증대에 활용이 가능한 것으로 나타났다. '시스템 수준'은 하나의 범용기술로 분석하였으며, 플랫폼을 중심으로 요소기술 수준, 컴퓨터와 스마트기기 등이 유기적으로 상호연계되어 시스템화된 디지털 데이터 기반의 4차 산업혁명 기술로 조명되었다. 조경산업에 특화하여 '트렌드 수준'으로 응용하면 선순환적 가치증대에 효과적인 기술로 나타났다. 요소기술 수준을 응용한 트렌드 수준에서 제시된 모든 활용 방안의 구현과 시너지효과 창출이 가능하다. 스마트정원, 스마트공원 등이 추구해야 하는 수준으로 분석되었다. 트렌드 수준의 인접산업 기술 중에는 스마트시티, 스마트홈, 스마트팜 및 정밀농업, 스마트관광, 스마트헬스케어가 협업에 의한 연계성이 클 것으로 판단되었다. 다음으로, 도시재생 공공공간을 포함한 조경공간의 조성 유지관리 및 서비스에서 도구이자 소재로서, 트렌드 수준으로 응용된 관련 기술의 다양한 활용 방안이 조명되었다. 즉, 유비쿼터스 컴퓨팅의 실현으로 조경공간에서 디지털 기술의 기본적 특성이 반영된 초연결화, 초실감화, 초지능화, 초융합화되는 방안들이 제시되었다. 조경산업이 도시재생 사업에 참여함에 있어서도, 기존 업무를 비롯하여 새로운 성격의 요구 수용 및 조율, 교육, 컨설팅 등에서 가치를 증대하는데 효과적인 것으로 분석되었다. 특히, 조경영역 전반이 전략적 교두보로 유지관리를 연계하여, 트렌드 수준의 관련 기술을 시스템화할 때 선순환적 가치증대에 효과적인 것으로 나타났다. 산업구조 상, 다양한 경로에서 생산된 데이터와 정보를 유통시키는데 효과적이기 때문이다. 향후 디지털 데이터 기반의 4차 산업혁명 기술을 실제 조경공간의 조성 유지관리 및 서비스에 융합하여 실증하는 등의 후속적 연구가 필요하다.