• Title/Summary/Keyword: 크리프 해석

Search Result 200, Processing Time 0.024 seconds

An analysis of deformation behavior on dynamic bulging in the high speed continuous casting (고속 연속주조에 있어서 동적 벌징의 변형거동 해석)

  • 강충길;윤광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1217-1226
    • /
    • 1988
  • This paper shows an deformation behavior of steel cast slabs, which is used to prevent internal cracks of a slab in an unbending zone, in case of hot charge rolling(HCR) and hot direct rolling(HDR). The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure has been computed in terms of creep and elastic-plasticity and for high strand surface temperature and high casting speed V=1.4-2.2m/min. The strain and strain rate distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress (온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.288-292
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behaviour of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

A Study for the Mechanical Behavior of the Continuous Casting Slab Using Numerical Analysis (수치해석을 이용한 연주 주편의 역학적 거동 해석)

  • Ha, Jong-Su;Cho, Jong-Rae;Lee, Bu-Yun;Ha, Man-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.122-128
    • /
    • 2000
  • In this paper, a bulging condition which affect the quality of continuous casting steel was analyzed by using the numerical analytic method. First, solidification analyses were performed for each cooling zone by one-dimensional finite difference method. The bulging deformation of cast slab has been calculated with a two-dimensional elasto-plastic and creep finite element model. The adequacy of the model has been checked against the experimental results. From this study the effects of the process variables such as casting speed, cooling condition and roll pitch were examined. The results from these analyses would be able to apply to the design of continuous casting process.

  • PDF

Ultimate Analysis of Prestressed Concrete Cable-Stayed Bridges (프리스트레스트 콘크리트 사장교의 극한해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.85-98
    • /
    • 1993
  • A method of analysis for the material and geometric nonlinear analysis of planar prestressed concrete cable-stayed bridges including the time-dependent effects due to load history, creep, shrinkage, aging of concrete and relaxation of prestress is described. The analysis procedure, based on the finite element method, is capable of predicting the response of these structures through elastic, cracking, inelastic and ultimate ranges. The nonlinear formulation for the description of motion is based on the updated Lagrangian approach. To account for the material nonlinearity, nonlinear stress-strain relationship and cracking of concrete, nonlinear stress-strain relationships of reinforcing steel, prestressing steel, and cable, including load reversal are given. Results from a numerical examples on ultimate analyses of cable-stayed bridges are presented to illustrate the analysis method.

  • PDF

Determination of Design Moments in Bridges Constructed by Movable Scaffolding System (MSS공법으로 시공되는 교량의 설계 모멘트 결정)

  • 곽효경;손제국
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.317-327
    • /
    • 2001
  • In this paper, a relation to calculate design moments for reinforced concrete(RC) bridges constructed by movable scaffolding system(MSS) is introduced. Through the time-dependent analysis of RC bridges considering the construction sequence, the structural responses related to the member forces and deflections are reviewed, and a governing equation for determination of the design moment, which includes the creep deformation, is derived on the basis of the displacement-force condition at every constructuion stage. By using the relation, the design moment and its variation over time can easily be obtained only with the elastic analysis results without additional time-dependent analysis. In addition, correlation studies with the results by rigorous numerical analyses are conducts to verify the applicability of the introduced relation, and a more reasonable guideline for the determination of design moments is proposed on the basis of the obtained moment envelop.

  • PDF

Development of Web-based Design Compatibility Assessment Program for High Temperature Reactor (고온로 설계 적합성평가 프로그램 개발)

  • Cho, Doo Ho;Surh, Han Bum;Choi, Jae Boong;Huh, Nam Su;Choi, Young Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • In this paper, W-DCAP-HTR(Web-based Design Compatibility Assessment Program for High Temperature Reactor) which will be used to check the design criteria for high temperature reactor is newly proposed. To do this, the assessment procedure of the ASME Sec.III Div.5 such as time-dependent primary stress limit, accumulated inelastic strain, and creep-fatigue damage evaluation were investigated. Furthermore, the trend of candidate materials for high temperature reactor was also reviewed. Then, all assessment procedures for high temperature reactor have been computerized to enhance the efficiency and to reduce the possibility of human error during calculating procedure by hand calculation. It can be directly conducted by adopting the actual thermal and structural analysis results. The validation of W-DCAP-HTR has been demonstrated by benchmark analysis.

Determination of Efficient Shoring System in RC Frame Structures Considering Time-Dependent Behavior of Concrete (시간의존적 거동을 고려한 철근콘크리트 골조의 효율적인 지지시스템 결정)

  • 김진국;홍수미;곽효경
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.225-239
    • /
    • 2004
  • In this paper, systematic analyses for the shoring systems installed to support applied loads during construction are performed on the basis of the numerical approach introduced in the previous study. Structural behaviors require changes in design variables such as types of shoring systems, shore stiffness and shore spacing. In this paper, the design variable are analyzed and discussed. The time dependent deformations of concrete and construction sequences of frame structures are also taken into account to minimize structural instability and to improve design of shoring system, because those effects may increase axial forces delivered to shores. From many parametric studies, it can be recommended that the most effective shoring system is 2SlR(two shores and one reshore)

Axisymmetric Nonlinear Consolidation Analysis for Drainage-installed Deposit Considering Secondary Compression (배수재가 설치된 연약지반의 2차압축을 고려한 축대칭 비선형 압밀해석)

  • Kim Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.133-140
    • /
    • 2005
  • In order to accelerate the rate of consolidation settlement and gain a required shear strength for a given soft clay deposit, vertical drain method combined with a preloading technique has been widely applied. In this paper, a theory of axisymmetric nonlinear consolidation fer drainage-installed deposit, which considers secondary compression (or creep) during primary consolidation, as well as the variations of compressibility and permeability during the consolidation process, has been developed. A computer program named AXICON based on Hypothesis B fur the analysis of axisymmetric nonlinear consolidation was developed by adopting finite difference method. The results of AS(ICON were compared with Hansbo's solution based on Hypothesis A, as well as in-situ settlements and pore pressures measured in test embankment of Ska-Edeby. The results indicated that Hypothesis A usually underestimated the in-situ settlement and Hypothesis B was considered to be logically correct. It was also shown that one may able to appropriately predict the real in-situ behaviors using the proposed program.

Time-dependent Parametric Analyses of PSC Composite Girders for Serviceability Design (사용성 설계를 위한 PSC 합성거더교의 시간의존적 변수해석)

  • Youn, Seok-Goo;Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.823-832
    • /
    • 2006
  • To ensure the serviceability requirements of PSC composite girder bridges, it is essential to predict the stresses and deformations of the structure under service load conditions. Stresses and deformations vary continuously with time due to the effects of creep and shrinkage of concrete and relaxation of prestressing steel. The importance of these time-dependent effects is much more pronounced in precast prestressed concrete structures built in stages than in those constructed in one operation. In this paper, time-dependent analyses for PSC composite bridges using 30m standard girders have been conducted considering with the variation of the times of introducing initial prestressing forces and casting concrete. A computer program has been developed for the time-dependent analysis of simple or continuous PSC composite girders and parametric studies are conducted. Based on the numerical results, it is investigated the long-term behaviors of PSC composite girder bridges and discussed the limitations of the current codes for the prestress loss.

Nonlinear Analysis of Incheon Bridge Considering Time-Dependent Behavior of Concrete Pylon (콘크리트 주탑의 시간 의존적 거동을 고려한 인천대교의 비선형 해석)

  • Ha, Su-Bok;Kim, Jin-Il;Hwang, Chang-Hee;Shin, Hyun-Mock;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Recently, building of long span bridge is increasing and cable stayed bridges have large portion in civil projects. As the spans of bridges become longer, steel cable-stayed bridges have been constructed mainly for slim structure. But in many case, pylons are constructed by concrete for the stability of structures and the economy. Concrete is greatly influenced by the long-term behavior like creep and drying shrinkage, so analysis of stress redistribution and structural change in construction is required. In this study, as a cable stayed bridge with concrete pylon, Incheon Bridge is analyzed by nonlinear FEM analysis program RCAHEST. Through this analysis, time dependent effect of concrete pylon to whole cable stayed bridge system is studied.