• Title/Summary/Keyword: 크리프 해석

Search Result 201, Processing Time 0.029 seconds

Validation of Permanent Deformation Model for Flexible Pavement using Accelerated Pavement Testing (포장가속시험을 이용한 소성변형예측 모델의 검증)

  • Choi, Jeong Hoon;Seo, Youngguk;Suh, Young Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.491-497
    • /
    • 2009
  • This paper presents the results of accelerated pavement tests (APT) that simulate permanent deformation (rutting) of asphalt concrete pavements under different temperatures and loading courses. Also, finite element (FE) analysis has been conducted to predict the test results. Test section for APT is the same as one of test sections at Korea Expressway Corporation test road and is subjected to a constant moving dual tire wheel load of APT at three different temperatures: 30, 40, $50^{\circ}C$. The moving wheel is applied at different loading courses within a 75cm wide wheel path to account for traffic wandering. Also, the effect of wandering on permanent deformation development is investigated numerically with three wandering schemes. In this study, ABAQUS is adopted to model APT pavement section with plain stain elements and creep strain rate model is used to take into account viscoplastic stain of asphalt concrete mixtures, and elastic layer properties are back-calculated from FWD measurements. Plus, the effect of boundary condition and subgrade on FE permanent deformation predictions is investigated. A full FE model that accounted for subgrade provided more realistic rut depth predictions, indicating subgrade has contributed to surface rutting.

Analysis on Creep of Concrete under Multiaxial Stresses Using Microplane Model (미세평면 모델을 적용한 다축응력 상태의 콘크리트 크리프 분석)

  • Kwon Seung-Hee;Kim Yun-Yong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.195-204
    • /
    • 2004
  • Poisson's ratio due to multiaxial creep of concrete reported by existing experimental works was controversial. Poisson's ratio calculated from measured strain is very sensitive to small experimental error. This sensitivity make it difficult to find out whether the Poisson's ratio varies with time or remain constant, and whether the Poisson's ratio has different value with stress states or not. A new approach method is needed to resolve the discrepancy and obtain reliable results. This paper presents analytical study on multiaxial creep test results. Microplane model as a new approach method is applied to optimally fitting the test data extracted from experimental studies on multiaxial creep of concrete. Double-power law is used as a model to present volumetric and deviatoric creep evolutions on a microplane. Six parameters representing the volumetric and deviatoric compliance functions are determined from regression analysis and the optimum fits accurately describe the test data. Poisson's ratio is calculated from the optimum fits and its value varies with time. Regression analysis is also performed assuming that Poisson's ratio remains constant with time. Four parameters are determined for this condition, and the error between the optimum fits and the test data is slightly larger than that for six parameter regression results. The constant Poisson's ratio with time is obtained from four parameter analysis results and the constant value can be used in practice without serious error.

Long-Term Behavior of CFT Column under Central Axial Load (중심축 하중을 받는 CFT 기둥의 장기거동에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • Concrete filled steel tubular (CFT) columns are becoming popular in structural applications. The increased popularity comes from their excellent structural properties such as high strength, high ductility, and large energy absorption capacity. However, the disadvantage feature of CFT column is the difficulty in predicting its time dependant characteristic (i.e., creep and shrinkage) of inner concrete. The time dependent behavior of CFT column can cause serious serviceability problems. Therefore, it is necessary to investigate the long term behavior of CFT column. This paper presents analytical and experimental studies on long-term behavior of CFT-column under a central axial loading. Two loading cases are considered in the research; (1) the load applied only at the inner core concrete of CFT-column and (2) the load applied simultaneously on both concrete and steel tube. Analysis method using the bond strength model is proposed and conclusions on long-term properties of CFT-column can be derived from the results.

Time-Dependent Deflections of Prestressed Concrete Bridges Constructed by the Segmental Cantilever Method (캔틸레버 시공법에 의해 가설되는 프리스트레스트 콘크리트 교량의 장기처짐해석)

  • Oh, Byung Hwan;Choi, Kye Shick
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.49-58
    • /
    • 1990
  • A numerical procedure is developed to analyze the time-dependent deflections of prestressed concrete bridges constructed by the segmental cantilever method. The developed computer program accounts for the time-dependent properties of prestressed concrete materials due to the varying modulus of elasticity, creep and shrinkage of concrete and the stress relaxation of prestressing steel. It also accounts for the stiffness increase due to the presence of the steel reinforcements and the effects of the shear deformation of the prestressed concrete bridge girders. The program is applied to a multi-span continuous segmental prestressed concrete bridge to demonstrate its capabilities and to explore the behavior characteristics of the segmental bridges.

  • PDF

Thermal behavior of the duct applied Functionally Graded Material (경사기능재료를 적용한 덕트의 열적거동해석)

  • Yoon, Dong-Young;Park, Jung-Sun;Im, Jong-Bin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.516-521
    • /
    • 2004
  • In unmanned aerial vehicles (UAV), the high temperature results from friction among the air, combustion of fuel in engine and combustion gas of a nozzle. The high temperature may cause serious damages in UAV structure. The Functionally Graded Material (FGM) is chosen as a material of thc engine duct structure. Thermal stress analysis of FGM is performed in this paper. FGM is composed of two constituent materials that are mixed up according to the specific volume fraction distribution in order to withstand high temperature. Therefore, hoop stress, axial stress and shear stress of duct with 2 layers, 4 layers and 8 layers FGM are compared and analyzed respectively. In addition, the creep behavior of FGM used in duct structure of an engine is analyzed for better understanding of FGM characteristics.

  • PDF

Deformation Analysis and Experimental Verification of DVD Optical Disc Holders (DVD 광 디스크 홀더의 변형 해석 및 실험적 검증)

  • 김진곤;박용국
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.164-170
    • /
    • 2003
  • To ensure the reliability of DVDR-P and DVD-ROM, it is imperative to remedy the unrecoverable creep deformation and/or relaxation of the holding force of an optical disc holder. To predict the deformation of an optical disc holder, a deformation analysis of an 80 mm optical disc holder considering the creep characteristics of 3 plastic materials has been conducted. Subsequently, the results by this Finite Element Analysis (FEA) are experimentally verified. A disc holder inserted in a cartridge case is kept in a chamber of $60^{\circ}C$ with 90 % humidity for 24 hours. The arm span and the holding force of the disc holder are measured after being left for another 24 successive hours at a room temperature and under normal humidity. The predicted results by FEA are in good agreement with experimentally measured values.

와전류탐상과 유한요소해석을 이용한 Carbon/epoxy 튜브의 결함 평가

  • Kim, Chul-Woong;Lee, Jung-Soon;Um, Tae-Gun;Song, Il;Gu, Sang-Mo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.75-75
    • /
    • 2004
  • Carbon/epoxy는 기존의 금속재료에 비해 피로강도 및 기계적 특성이 매우 우수하다. 따라서 최근 튜브형태의 Carbon/epoxy 활용방안이 부각되고 있다. 그러나 Carbon/epoxy는 탄소재료의 특성상 고압, 충격 및 부식에 매우 취약하다. 또한, 장기간 고압피로 및 크리프에 노출될 경우, 금속재료에서는 관찰할 수 없는 층간분리(delamination)가 발생된다. 이러한 층간분리는 섬유방향과 평행하게 진전될 때 급격한 파손을 야기하므로 층간분리에 대한 메커니즘을 이해하고 그 방지책을 강구하는 것은 매우 중요하다.(중략)

  • PDF

Thermal Structural Analysis of a Duct with Heat Resistant Metal Materials for Smart UAV (고온 내열재료를 사용한 스마트 무인기 덕트의 열 구조 해석)

  • Im, J.B.;Yoon, D.Y.;Lee, K.M.;Park, J.S.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.2
    • /
    • pp.17-28
    • /
    • 2004
  • In unmanned aerial vehicle (UAV), the high temperature results from friction with the air, combustion of fuel and combustion gas of a nozzle etc. It causes serious problems in the UAV structure. The characteristic analysis of heat resistant metal and ceramic materials and creep analysis for the functionally graded material (FGM) is presented in this paper. FGM is composed of two constituent materials that are mixed up according to the specific volume fraction distribution in order to withstand high heat condition. In addition, the creep behavior of FGM applied in duct structure of an engine is analyzed.

  • PDF

Scoping Analysis for PWR Penetration Tube Weld Failure (중대사고시 압력용기 노즐 용접부의 파손확율)

  • 정광진;황일순
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.818-823
    • /
    • 1998
  • Three Mile Island Unit-2 (TMI-2)의 사고 후 OECD-NEA 주관의 연구에 의하면 압력용기 하부의 노즐이 국부열점(hot spot) 영역의 경우 거의 압력용기 바닥까지 용융되었음이 조사되었다. [1]. 이러한 재배치된 용융노심의 열속에 의하여 압력용기의 외부와 통하는 penetration tube weld(노즐 용접부)가 파손된다면 내부의 고압상태로 인해 penetration tube ejection 사고 및 이에 따르는 용융노심의 압력용기 외부로의 유출 가능성까지 배제할 수 없을 것이다. 본 연구의 출발점은 중대사고시 이러한 압력 및 열속에 따르는 노즐 용접부의 파손확률을 결정하는데 있다. 크리프 파출시 기존의 해석에서 쓰인 deterministic approach를 개선하여 probabilistic approach를 개발하였다. 또한 기존의 해석에서 쓰인 단순한 안전 여유도(margin-to-failure)의 개념과 비교하여 용접부에서의 파손확률을 계산하였다.

  • PDF

Behaviors of surface micro-crack of 304 stainless steel at elevated temperature (304스테인리스강의 고온표면미소 균열의 거동에 관한 기초적 연구)

  • 서창민;이정주;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1320-1326
    • /
    • 1988
  • This paper deals with the behavior of surface crack growth and the characteristics of surface micro-crack distribution under creep and creep-fatigue with 1 min. and 10 min. of load holding times at 593.deg.C, in air. The test specimen is a plate type with a small artificial defect of type 304 the small defect has been carried out by the surface replica method and optical microphotography. The experimental results have been interpreted from the view-point of fracture mechanics. It can be concluded that the longer the hold time the longer the total life time. Most of surface micro-cracks initiate at grain boundaries before the specimen reaches 20% of its total life time, a few of them lead to fracture by coalescence with the main crack.