• Title/Summary/Keyword: 크리프

Search Result 760, Processing Time 0.032 seconds

Creep Property Assessment and Creep Life Estimation for High-Temperature Tube Material(2.25Cr1Mo Steel) in Power Plants by LMP (발전용 고온 배관재료 2.25Cr1Mo 강의 크리프 특성과 LMP에 의한 크리프 수명의 예측)

  • Lee, Sang-Guk;Jeong, Min-Hwa;O, Se-Gyu;Song, Jeong-Geun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.65-70
    • /
    • 1998
  • In this report, the creep properties and creep life estimation by Larson-Miller Parameter(LMP) Method for 2.25Cr1Mo steel to be used as power plant tubes or other components were presented at the high temperatures of 500, 550, and $600^{\circ}C$. It was confirmed experimentally and quantitatively that a creep life estimation equation at such various high temperatures was well derived by LMP and could be used very effectively within the creep life of 10$^3$ hours, but very unreliable and even dangerous for design in a long term of creep life such as 10$^4$ or $10^5$ hours.

  • PDF

Finite Element Analysis of Creep Crack Growth Behavior Including Primary Creep Rate (1차 크리프 속도를 고려한 크리프 균열 진전의 유한요소 해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1120-1128
    • /
    • 1999
  • An elastic-viscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. In Cr-Mo steel stress fields obtained from the crack growth method by mesh translation were compared with both cases that the secondary creep rate is only used as creep material property and the primary creep rate is included. Analytical stress fields, Riedel-Rice(RR) field, Hart-Hui-Riedel(HR) field and Prime(named in here) field, and the results obtained by numerical method were evaluated in details. Time vs. stress at crack tip was showed and crack tip stress fields were plotted. These results were compared with analytical stress fields. There is no difference of stress distribution at remote region between the case of 1st creep rate+2nd creep rate and the case of 2nd creep rate only. In case of slow velocity of crack growth, the effect of 1st creep rate is larger than the one of fast crack growth rate. Stress fields at crack tip region we, in order, Prime field, HR field and RR field from crack tip.

Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials (횡방향으로 등방성인 재료에서 균열선단 크리프 변형 거동)

  • Ma, Young-Wha;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1455-1463
    • /
    • 2009
  • Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-$2^{nd}$ creep, which elastic modulus ( E ), Poisson's ratio ( ${\nu}$ ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials.

Estimation of C(t) -Integral Under Transient Creep Conditions for a Cracked Pipe Subjected to Combined Mechanical and Thermal Loads Depending on Loading Conditions (열응력 및 기계응력이 작용하는 균열배관의 하중조건에 따른 천이 크리프 조건 C(t)-적분 평가)

  • Oh, Chang-Young;Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.609-617
    • /
    • 2011
  • There is a trend towards the progressive use of higher operating temperatures and stresses to achieve improved efficiencies in power-generation equipment. It is important to perform the crack assessment under hightemperature and high-pressure conditions. The C(t)-integral is a key parameter in crack assessment for transient creep states. The estimation of the C(t)-integral is complex when considering the mechanical and thermal loads simultaneously. In this paper, we study estimation of C(t)-integral under combined mechanical and thermal load depending on loading conditions.

Relationship Between Small-punch Creep Test Data and Uniaxial Creep Test Data based on the Monkman-Grant Relation (몽크만·그랜트관계에 기초한 소형펀치 크리프시험 데이터와 일축 크리프시험 데이터의 관계)

  • Kim, Bum Joon;Sohn, Ilseon;Lim, Byeong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.809-814
    • /
    • 2013
  • The relationship between the small-punch creep test and the conventional creep test was investigated experimentally using a method similar to that of the Monkman-Grant relationship. Uniaxial and small-punch creep rupture tests were carried out on 9Cr-2W ferritic steel (Commercial Grade 92 steel: X10CrWMoVNb 9-2) at elevated temperatures. From the relation derived in the same manner as the Monkman-Grant relation, a correlation between the displacement rate in response to the small-punch creep test and the strain rate in the uniaxial creep test was found, and the creep life was calculated using this relation. Furthermore, the failure modes of the small punch creep test specimens were investigated to show that the fracture was caused by creep.

Numerical Modeling of Long-Term Behavior of Geosynthetic Reinforced Soil Wall used in Bridge Abutment (보강토 교대 옹벽의 장기 거동에 대한 수치 모델링)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • This paper presents the numerical modelling technique for modeling the time-dependent behavior of geosynthetic reinforced soil wall under a sustained load. The applicability of power law-based creep models for modeling the creep deformations of geogrid and reinforced soil was first examined. The modeling approach was then used to simulate the long-term performance of a geosynthetic reinforced soil wall used in a bridge abutment. The results indicated that the power law-based models can be effectively used for modelling the long term behavior of geosynthetic reinforced walls under sustained loading. In addition, it was shown that, when using creep deformation susceptible backfill soils, the abutment wall and the sill beam may experience deformations exceeding allowable limits. Practical implications of the findings from this study are discussed in great detail.

Creep Crack Propagation Properties of Rotor Steel under Constant Load and Constant Ct Condition (일정하중 및 일정Ct에서 로터강의 크리프 귤열전파 특성)

  • Jeong, Soon-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.105-111
    • /
    • 2001
  • The creep crack growth properties in 3.3NiCrMoV steel were investigated at 55$0^{\circ}C$ by using CT specimen under constant load and constant Ct condition that was held during crack growth of Imm distance. Ct lelied on load line displacement rate, C*usually increased with crack length though load is reduced in order to maintain constant Ct value as crack growth and appeared scatter band. At constant load and Ct region, crack growth slope was 0.900 and 0.844 each, on the other hand C* slope was 0.480. Fully coalesced area(FCA) ahead of crack tip increased as Ct increase to the critical value, and after that value FCA decreased. For the tertiary creep stage of crack growth test, the most of displacement was due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of Ct.

  • PDF

Assessments of Installation Damage and Creep Deformation of Geogrids (지오그리드의 시공시 손상 및 크리프 변형 특성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong;Lee, Do-Hee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.29-40
    • /
    • 2004
  • The factors affecting the long-term design strength of geogrids can be classified into factors on creep deformation, installation damage, temperature, chemical degradation, biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrids. This paper describes the results of a series of experimental investigation, which were conducted to assess the installation damage according to different fill materials and creep characteristic of various geogrids. The results of this study show that the installation damage and creep deformation of geogrids significantly depends on a row material and a manufacturing process of geogrids.

  • PDF

9Cr강의 고온 균열성장 거동에 대한 연구

  • 마영화;백운봉;윤기봉
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.13-18
    • /
    • 2002
  • 고온에서 균열체는 하중이 증가 또는 감소하는(이후, "부하 및 제하"라고 칭하기로 한다. ) 동안 크리프 및 피로에 의한 균열성장 거동을 보이게 된다. 또한, 부하시 발생하는 균열선단의 되풀이 소성의 정도에 따라 크리프에 의한 균열성장률이 영향을 받게 된다./sup (1)/ 현재까지 연구된 재료들의 경우는 되풀이 소성 효과에 의한 크리프 역전(creep reversal) 현상 정도가 이상적인 가정에 일치하는 경우였다.(중략)

  • PDF

Thermal Aging and Creep Rupture Behavior of STS 316 (STS 316의 시효 열화 처리와 크리프 거동 특성)

  • 임병수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.123-129
    • /
    • 1999
  • Although type 316 stainless steel is widely used such as in reactors of petrochemical plants and pipes of steam power plants and s attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants and is attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants the effect of precipitates which form during the long term exposure at service temperature on creep properties is not known sufficiently. In this study to investigate the creep properties and the influence of prior aging on the microstructure to form precipitates specimens were first solutionized at 113$0^{\circ}C$ for 20 minutes and then aged for different times of 0 hr, 100 hrs, 1000 hrs and 2200 hrs at 75$0^{\circ}C$ After heat treatments tensile tests both at room temperature and $650^{\circ}C$ and constant load creep ruptuere tests were carried out.

  • PDF