• Title/Summary/Keyword: 크롤러 크레인

Search Result 4, Processing Time 0.018 seconds

Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom (크롤러 크레인에서 붐의 처짐을 고려한 러핑와이어 장력과 전도모멘트 사이의 관계식 보정)

  • Jang, Hyo-Pil;Han, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.44-49
    • /
    • 2011
  • The crawler crane, which consists of a lattice boom, a driving system, and movable vehicle, is widely used in a construction site. It needs to be installed an overload limiter to prevent the overturning accident and the fracture of structure. This research is undertaken to provide the relation formula for designing the overload limiter as follows: First the relation formulas between the wire-rope tension and the hoisting load or the overturning ratio according to the luffing angle and length of a lattice boom are established. Secondly the derived formulas are corrected by using the compensated angle considering the deflection of boom through the finite element analysis. The stiffness analysis is carried out for 30-kinds of models as a combination of 6-kinds of luffing angle and 5-kinds of length of boom. Finally the shape design of a stick type load cell, which is the device to measure the wire-rope tension, is performed. 5-kinds of notch radius and 5-kinds of center hole radius are adopted as the design parameter for the strength analysis of the load cell.

Analysis of Roller Load by Boom Length and Rotation Angle of a Crawler Crane (크롤러 크레인의 붐 길이 선회각도에 의한 롤러 하중 해석)

  • Lee, Deukki;Kang, Jungho;Kim, Taehyun;Oh, Chulkyu;Kim, Jongmin;Kim, Jongmyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.83-91
    • /
    • 2021
  • A crawler crane, which consists of a lattice boom, a driving system, and a movable vehicle, is widely used on construction sites. The crawler crane often traverses rough terrain at these sites; as a result, an overload limiter needs to be installed on the crane to prevent it from overturning and breaking. In this paper, we studied the distributed load change in relation to boom length and the angle of rotation of the roller that comes in direct contact with the grounded track shoe. First, we developed a 3D model of a crawler crane and meshed it for finite elements. Then, we performed finite element analysis to derive the load on the roller. Finally, we graphed and examined the roller distributed load data of the case according to boom length and rotation angle. By detecting the load on the roller of the crawler crane, we can predict the potential for the crane to overturn before it happens.

A Basic Study of Crane Trajectory Distance Calculation for Sustainable PC Members Erection of Large Logistic Building (대형물류센터 PC부재 양중을 위한 크레인 궤적거리 산정 기초 연구)

  • Lim, Jeeyoung;Oh, Jinhyuk;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.77-78
    • /
    • 2023
  • As large logistics buildings have high floor heights and long spans, these buildings are designed as PC structures, and large cranes are used to lift PC members. PC erection planning can generally cause errors depending on the field engineer's experience. To solve this problem, a basic analysis method is needed to establish a systematic PC member erection plan. Crane work can be minimized if the trajectory is easily and quickly calculated according to the location of the crane and applied to the site. Therefore, the objective of this study is a basic study of crane trajectory distance calculation for sustainable PC members erection of large logistic building. In this study, a crawler crane commonly used for lifting PC members is limited. The trajectory distance for the PC erection plan was automatically calculated using the algorithm.

  • PDF

Dynamic Simulation of a Shipbuilding Erection Crane based on Wire Rope Dynamics (Wire Rope Dynamics 기반의 조선용 탑재 크레인 동역학 시뮬레이션)

  • Cha, Ju-Hwan;Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • A wire rope is comprised of several metal wires which are wound together like a helix and it can resist relatively large axial loads, as compared with bending and torsional loads. A shipbuilding crane for erection such as a floating crane, a gantry crane, and a crawler crane hoists up and down heavy blocks by using these wire ropes. Thus, it is necessary to find dynamic properties of a wire rope in order to safely lift the blocks using the crane. In this study, a formula for calculating the tension and torsional moment acting on wire ropes of the crane was derived based on the existing study, and then dynamic simulation of the crane was performed based on the formula. The result shows that the dynamic simulation can be applied to find the safe method for block erection of shipyards.