• Title/Summary/Keyword: 크레임

Search Result 505, Processing Time 0.022 seconds

An Empirical Comparison and Verification Study on the Seaport Clustering Measurement Using Meta-Frontier DEA and Integer Programming Models (메타프론티어 DEA모형과 정수계획모형을 이용한 항만클러스터링 측정에 대한 실증적 비교 및 검증연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.2
    • /
    • pp.53-82
    • /
    • 2017
  • The purpose of this study is to show the clustering trend and compare empirical results, as well as to choose the clustering ports for 3 Korean ports (Busan, Incheon, and Gwangyang) by using meta-frontier DEA (Data Envelopment Analysis) and integer models on 38 Asian container ports over the period 2005-2014. The models consider 4 input variables (birth length, depth, total area, and number of cranes) and 1 output variable (container TEU). The main empirical results of the study are as follows. First, the meta-frontier DEA for Chinese seaports identifies as most efficient ports (in decreasing order) Shanghai, Hongkong, Ningbo, Qingdao, and Guangzhou, while efficient Korean seaports are Busan, Incheon, and Gwangyang. Second, the clustering results of the integer model show that the Busan port should cluster with Dubai, Hongkong, Shanghai, Guangzhou, Ningbo, Qingdao, Singapore, and Kaosiung, while Incheon and Gwangyang should cluster with Shahid Rajaee, Haifa, Khor Fakkan, Tanjung Perak, Osaka, Keelong, and Bangkok ports. Third, clustering through the integer model sharply increases the group efficiency of Incheon (401.84%) and Gwangyang (354.25%), but not that of the Busan port. Fourth, the efficiency ranking comparison between the two models before and after the clustering using the Wilcoxon signed-rank test is matched with the average level of group efficiency (57.88 %) and the technology gap ratio (80.93%). The policy implication of this study is that Korean port policy planners should employ meta-frontier DEA, as well as integer models when clustering is needed among Asian container ports for enhancing the efficiency. In addition Korean seaport managers and port authorities should introduce port development and management plans accounting for the reference and clustered seaports after careful analysis.

An Empirical Comparison and Verification Study on the Containerports Clustering Measurement Using K-Means and Hierarchical Clustering(Average Linkage Method Using Cross-Efficiency Metrics, and Ward Method) and Mixed Models (K-Means 군집모형과 계층적 군집(교차효율성 메트릭스에 의한 평균연결법, Ward법)모형 및 혼합모형을 이용한 컨테이너항만의 클러스터링 측정에 대한 실증적 비교 및 검증에 관한 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.3
    • /
    • pp.17-52
    • /
    • 2018
  • The purpose of this paper is to measure the clustering change and analyze empirical results. Additionally, by using k-means, hierarchical, and mixed models on Asian container ports over the period 2006-2015, the study aims to form a cluster comprising Busan, Incheon, and Gwangyang ports. The models consider the number of cranes, depth, birth length, and total area as inputs and container twenty-foot equivalent units(TEU) as output. Following are the main empirical results. First, ranking order according to the increasing ratio during the 10 years analysis shows that the value for average linkage(AL), mixed ward, rule of thumb(RT)& elbow, ward, and mixed AL are 42.04% up, 35.01% up, 30.47%up, and 23.65% up, respectively. Second, according to the RT and elbow models, the three Korean ports can be clustered with Asian ports in the following manner: Busan Port(Hong Kong, Guangzhou, Qingdao, and Singapore), Incheon Port(Tokyo, Nagoya, Osaka, Manila, and Bangkok), and Gwangyang Port(Gungzhou, Ningbo, Qingdao, and Kasiung). Third, optimal clustering numbers are as follows: AL(6), Mixed Ward(5), RT&elbow(4), Ward(5), and Mixed AL(6). Fourth, empirical clustering results match with those of questionnaire-Busan Port(80%), Incheon Port(17%), and Gwangyang Port(50%). The policy implication is that related parties of Korean seaports should introduce port improvement plans like the benchmarking of clustered seaports.

An Empirical Comparative Study of the Seaport Clustering Measurement Using Bootstrapped DEA and Game Cross-efficiency Models (부트스트랩 DEA모형과 게임교차효율성모형을 이용한 항만클러스터링 측정에 대한 실증적 비교연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.1
    • /
    • pp.29-58
    • /
    • 2016
  • The purpose of this paper is to show the clustering trend and the comparison of empirical results and is to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the bootstrapped DEA(Data Envelopment Analysis) and game Cross-efficiency models for 38 Asian ports during the period 2003-2013 with 4 input variables(birth length, depth, total area, and number of cranes) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, bootstrapped DEA efficiency of SW and LT is 0.7660, 0.7341 respectively. Clustering results of the bootstrapped DEA analysis show that 3 Korean ports [ Busan (6.46%), Incheon (3.92%), and Gwangyang (2.78%)] can increase the efficiency in the SW model, but the LT model shows clustering values of -1.86%, -0.124%, and 2.11% for Busan, Gwangyang, and Incheon respectively. Second, the game cross-efficiency model suggests that Korean ports should be clustered with Hong Kong, Shanghi, Guangzhou, Ningbo, Port Klang, Singapore, Kaosiung, Keelong, and Bangkok ports. This clustering enhances the efficiency of Gwangyang by 0.131%, and decreases that of Busan by-1.08%, and that of Incheon by -0.009%. Third, the efficiency ranking comparison between the two models using the Wilcoxon Signed-rank Test was matched with the average level of SW (72.83 %) and LT (68.91%). The policy implication of this paper is that Korean port policy planners should introduce the bootstrapped DEA, and game cross-efficiency models when clustering is needed among Asian ports for enhancing the efficiency of inputs and outputs. Also, the results of SWOT(Strength, Weakness, Opportunity, and Threat) analysis among the clustering ports should be considered.

A Study on the Asia Container Ports Clustering Using Hierarchical Clustering(Single, Complete, Average, Centroid Linkages) Methods with Empirical Verification of Clustering Using the Silhouette Method and the Second Stage(Type II) Cross-Efficiency Matrix Clustering Model (계층적 군집분석(최단, 최장, 평균, 중앙연결)방법에 의한 아시아 컨테이너 항만의 클러스터링 측정 및 실루엣방법과 2단계(Type II) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.31-70
    • /
    • 2021
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Hierarchical clustering(single, complete, average, and centroid), Silhouette, and 2SCE[the Second Stage(Type II) cross-efficiency] matrix clustering models on Asian container ports over the period 2009-2018. The models have chosen number of cranes, depth, birth length, and total area as inputs and container TEU as output. The main empirical results are as follows. First, ranking order according to the efficiency increasing ratio during the 10 years analysis shows Silhouette(0.4052 up), Hierarchical clustering(0.3097 up), and 2SCE(0.1057 up). Second, according to empirical verification of the Silhouette and 2SCE models, 3 Korean ports should be clustered with ports like Busan Port[ Dubai, Hong Kong, and Tanjung Priok], and Incheon Port and Gwangyang Port are required to cluster with most ports. Third, in terms of the ASEAN, it would be good to cluster like Busan (Singapore), Incheon Port (Tanjung Priok, Tanjung Perak, Manila, Tanjung Pelpas, Leam Chanbang, and Bangkok), and Gwangyang Port(Tanjung Priok, Tanjung Perak, Port Kang, Tanjung Pelpas, Leam Chanbang, and Bangkok). Third, Wilcoxon's signed-ranks test of models shows that all P values are significant at an average level of 0.852. It means that the average efficiency figures and ranking orders of the models are matched each other. The policy implication is that port policy makers and port operation managers should select benchmarking ports by introducing the models used in this study into the clustering of ports, compare and analyze the port development and operation plans of their ports, and introduce and implement the parts which required benchmarking quickly.

Effectiveness of Leading Light by Reflecting the Characteristics of Marine Traffic at Gamcheon Port (감천항 선박교통 특성을 반영한 도등 효용성 분석)

  • Shin-Young Ha;Seung-gi Gug
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.232-238
    • /
    • 2024
  • This study examines the effectiveness of Gamcheon Port's leading lights in reflecting the characteristics of ship traffic entering the port. The leading light of Gamcheon Port was proposed and installed in 1996 during the basic design process of supplementing the port's route signs for the entry and exit of 4,000 TEU container ships. Since then, it has been improved to accommodate the entry of 50,000 DWT general cargo ships and to reflect the crane height of Hanjin Pier, as a result of a review study conducted by the Busan Regional Maritime Affairs and Fisheries Administration to improve the still temperature of Gamcheon Port by relocating existing outer facilities. However, an analysis of the current characteristics of maritime traffic at Gamcheon Port reveals that maritime traffic congestion is smooth and the proportion of small and medium-sized ships under 10,000 tons is higher than that of large ships, resulting in decreased efficiency of the leading lights to respond to the entry of large ships. Nevertheless, considering the increasing CAGR of the entry ratio of ships of 30,000 tons or more by 8.45%, preparations for the anticipated increase in the proportion of large ships entering the port in the future are necessary, and it is preferable to maintain the function of the leading lights rather than demolishing the entrance to Gamcheon Port. The narrow nature of the Gamcheon Port route poses a higher risk of collision when ships entering and exiting encounter each other, which can burden the navigator. Therefore, instead of maintaining the function of the leading lights, it is possible to relocate the conduction light to reduce maintenance burden and install a direction light in its place. When installing the direction light, it is worth considering using Double Sector Lights instead of the currently installed Single Sector Lights at nearby Busan Bukhang Port, as the former can improve user satisfaction by providing a clearer middle line and reducing difficulties in distinguishing between points.