• Title/Summary/Keyword: 크랙성장개시

Search Result 6, Processing Time 0.021 seconds

A Study on the Life Span Prediction of Railroad Wheels caused by Rolling Contact Fatigue (철도차륜의 구름접촉피로에 의한 수명예측에 관한 연구)

  • Chun, C.K.;Yang, J.S.;Park, S.J.;Yi, G.S.;Ma, Y.S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1012-1020
    • /
    • 2006
  • The crack that occurs on the wheels of railroad cars can be categorized into a surface crack that starts from the surface or a subsurface crack that starts from the inside and can be detrimental to safe railroad operations. Therefore, estimating the growth life span of this type of crack is very important. In this research, the stress distributions, displacements, and the growth-life spans of both surface cracks and subsurface cracks have been studied. By using the finite element analysis, especially in the life span prediction process, the stress conditions and the stress intensity factors of the crack tip have been discovered. The Paris formula has been used to analyze the growth-life span prediction.

  • PDF

Microscopic fracture criterion of crack growth initiation (연성 균열성장 개시의 미시적 파괴조건)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.740-745
    • /
    • 1987
  • For the prediction of the crack growth initiation from a blunt notch or a precrack in a prestrained material under plane strain tension and small-scale yielding conditions, a microscopic fracture criterion is proposed in terms of the crack tip opening displacement(COD) needed for the attainment of fracture strain at a microstructural distance. Smooth blunting of a crack tip with an initial root radius is assumed, and strain distributions on the crack-line axis are calculated at each deformation stage until the distributions against an original distance normalized to the COD are insensitive to an initial root radius. This case of no initial-root-radius effect is taken as for a sharp crack tip, on which the criterion is applied to determine the characteristic length of material from a critical COD for a fatigue-precracked specimen. The predicted COD at the fracture initiation from a crack with an initial root radius or a prestraining shows reasonable agreement with experimental values.

Crock Resistance Properties of Natural Rubber Compounds for Tank Track Pads (군용 전투차량 궤도 pads용 천연고무 배합물의 내크랙성 향상을 위한 연구)

  • Shin, Jung-Eun;Kim, Yu-Seuk;Bae, Jong-Woo;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.335-344
    • /
    • 1998
  • In this study, the tearing energy and the rate of crack propagation of natural rubber (NR) compounds were evaluated to improve the crack resistance of tank-track pads. Although the factors affecting the crack resistance properties of NR compounds are various in this experiment, the effects of filler(carbon black) and the crosslinking system were evaluated. When the amount of accelerator is equal to that of sulfur( eg. efficient vulcanization), the compound shows the most excellent in the aged mechanical properties and the crack resistance properties. The ISAF carbon black(CB) having a good reinforcing characteristics was better than any other CB grades in physical properties and processablity. The optimum content was 50phr.

  • PDF

Finite Element Analysis of Edge Fracture of Electrical Steel Strip in Reversible Cold Rolling Mill (가역식 냉간 압연기에서 전기강판의 에지 파단에 관한 유한요소해석)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1619-1625
    • /
    • 2012
  • An electrical steel strip is commonly used as a core material in all types of electric transformers and motors. It is produced by a cold rolling process. In this paper, a damage-mechanics-based approach that predicts the edge fracture of an electrical steel strip during cold rolling is presented. We adopted the normal tensile stress criterion and the fracture energy method as a damage initiation criterion and a damage evolution scheme, respectively. We employed finite element analysis (FEA) to simulate crack initiation and propagation at the initial notch located at the edges of the strip. The material constants required in FEA were experimentally obtained by tensile tests using a standard and a notched sheet-type specimen. The results reveal that the edge crack was initiated at the entrance of the roll bite and that it rapidly evolved at the exit. The evolution length of the edge crack increased as the length of the initial notch as well as the front tension reel force of the strip increased.

A Comparison of the Crack Plane Equilibrium Model for Elastic-Plastic Fracture Analysis with the Irwin's Plastic Zone Corrected LEFM (탄소성 파괴해석을 위한 크랙 평면 평형모형과 항복 선형 파괴역학과의 비교에 관한 연구)

  • Lee, Kyu-Yong;Smith, F.W.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 1984
  • It is well known that the application of linear elastic fracture mechanics is inadequate to solve the large deformation fracture failures which occurr in ductile manner because of the large scale yielding due to the severe stress concentration in the region adjacent to the crack tip. The authors have been evolved a fracture model, the crack plane equilibrium model, for this kinds of elastic-plastic fracture problems in the previous report. In this report, the crack plane equilibrium model was compared with the Irwin's plastic zone corrected linear elastic fracture mechanics through theoretical comparisons and experimental results to examine the validity of the crack plane equilibrium model as an available tool for nonlinear fracture analysis. Through this study, the main results were reached as follows; Irwin's plastic zone corrected linear elastic fracture mechanics could be applicable only for small scale yielding problems as expected while the crack plane equilibrium model valid as a fracture model for large deformation fracture failure. However, the followings should be considered for the more precise evaluations of CPE model; 1) It is necessary to test more specimens which contain small cracks in the range of 2a/W<0.1. 2) It is important to detect the crack initiation point during the fracture test for determining an accurate fracture load. 3) Effects of specimen thickness in the fracture process zone should be examined.

  • PDF

Thermal Properties and Fracture Toughness of Bisphenol-Based DGEBA/DGEBS Epoxy Blend System (Bisphenol계 DGEBA/DGEBS 에폭시 블렌드 시스템의 열적 특성 및 파괴인성)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • In this study, the bisphenol-based DGEBA/GEBS blend systems were studied in cure kinetics, thermal stabilities, and fracture toughness of the casting specimen. The content of DGEBA/DCEBS was varied in 100 : 0, 90 : 10, 80 : 20, 70 : 30, and 60 : 40 wt%. The cure activation energies ($E_a$) of the blend systems were determined by Ozawa's equation. The thermal stabilities, including initial decomposed temperature (IDT), temperatures of maximum rate of degradation ($T_{max}$), and integral procedural decomposition temperature (IPDT) of the cured specimen were investigated by thermogravimetric analysis (TGA). For the mechanical interfacial properties of the specimens, the critical stress intensity factor ($K_{IC}$) test was performed and their fractured surfaces were examined by using a scanning electron microscope (SEM). As a result, $E_a$, IPDT, and $K_{IC}$ show maximum values in the 20 wt% DGEBS content compared with the neat DGEBA resins. This was probably due to the fact that the elevated networks were farmed by the introduction of sulfonyl groups of the DCEBS resin.