• Title/Summary/Keyword: 크기 투영

Search Result 139, Processing Time 0.021 seconds

Flow Regime Transition in Air-Molten Carbonate Salt Two-Phase Flow System (공기-탄산용융염 이상흐름계에서의 흐름영역전이)

  • Cho, Yung-Zun;Yang, Hee-Chul;Eun, Hee-Chul;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.481-487
    • /
    • 2009
  • In this of study, effects of input air velocity(0.05~0.22 m/sec) and molten carbonate salt temperature ($870{\sim}970^{\circ}C$) on flow regime transition have been studied by adopting a drift-flux model of air holdup and a stochastic analysis of differential pressure fluctuations in an air-molten sodium carbonate salt two-phase system(molten salt oxidation process). Air holdup where the flow regime transition begins was determined by air holdup-drift flux plot. The air holdup value which the flow regime transition begins was increased with increasing molten carbonate salt temperature due to the decrease of viscosity and surface tension of molten carbonate salt. To characterize the flow regime transition more quantitatively, differential pressure fluctuation signals have been analyzed by adopting the stochastic method such as phase space portraits and Kolmogorov entropy, The Kolmogorov entropy decreased with an increasing of molten carbonate salt temperature but increased gradually with an increase in an air velocity, however, it exhibited different tendency with the flow regime and the air velocity value which flow regime transition begins was same to the results of drift-flux analysis.

Efficient Homography Estimation for Panoramic Image Generation (효율적인 호모그래피 추정을 통한 파노라마 영상 생성)

  • Seo, Sangwon;Joeng, Soowoong;Han, Yunsang;Choi, Jongsoo;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.215-224
    • /
    • 2013
  • An efficient homography estimation method for large sized images is proposed. Estimating an accurate homography is one of the most important parts in image stitching processes. Since hardwares have been advanced, it has been passible to take higher resolution images. However, computational cost for estimating homography has been also increased. Specifically, when too many features exist in the images, it requires lots of computations to estimate a correct homography. Furthermore, there is a high probability of obtaining an incorrect homography. Therefore, we propose a numerical method to extract the appropriate correspondences from several down-scaled images to estimate and compensate the homography numerically for restoring an original homography. Also, if there is an unbalance in color tone between the reference and the target images, we make them balanced by using local information of the overlapped regions. Experimental results show that proposed method is three times faster in 3.2 mega pixel images, five times faster in 8mega pixel images than the conventional approach. Therefore, we believe that the proposed method can be a useful tool to efficiently estimate a homography.

Historical Studies on the Characteristics of Taeaek Pond at Changdeok Palace (창덕궁 태액지의 조영사적 특성)

  • Jung, Woo-Jin;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.46-63
    • /
    • 2012
  • The object of this study was to analyze the speciality of Korean traditional waterscape and unique landscape formed with reflection of the phases of the time sat the area of Juhabru(宙合樓) in Changdeok Palace as a basic research to find the prototype of Taeaek pond at Changdeok Palace and restoration of the palace. Originally, Taeaek pond at Changdeok Palace was constructed in KingInjo(仁祖) period as a name of Yongji(龍池), later it called Taeaek pond after King Sukjong(肅宗). There is an island as a symbol of the immortal isle, and Chungseojeong(淸署亭), Taiksujae(澤水齋) and Buyongjeong(芙蓉亭) which were built to view the waterscape in Taeaek pond. Buildings were built asymmetrical balance around Taeaek pond because of the morphological character of tetragonal pond. Arrangement of this area has a definite form of axial structure. Yeolgokwan(閱古觀) Gaeyuwa(皆有窩), pavilions, bridges, islands, Osumoon(魚水門) and Juhabru are located on the north and south axis, and island and Osumoon play a role as a intersection and form an east of west axis. In this study, manual of construction for an island and pavilions is provided by analyzing transformational process of island and pavilions at Taeaek pond. Furthermore, kings and officials used to statically enjoy the view around Taeaek pond area, but dynamic fishing and boating activity happened in King Jungjo(正祖) period. These historical backgrounds have an influence on the spatial organization of Taeaek pond. For instance, bridge between Taeaek pond and island was destroyed with the increase of the importance of boating. Symbolic structure around Taeaek pond means 'fish changes to dragon' and 'both of king and officials become one'. Taiksujai, carving fish, Osumoon and Juhabru are provided as a related spatial factors.

Analysis of Intrafractional Mass Variabilities Using Deformable Image Registration Program (영상변조 프로그램을 이용한 호흡 위상 간 종양의 움직임 특성 분석)

  • Cho, Jeong-Hee;Kim, Joo-Hoo;Seo, Sun-Youl;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.173-181
    • /
    • 2012
  • The aim of this study is to compare the geometric characteristics of the lung tumor, such as tumor centroid, HU change relative to breath phase, depending on tumor location and adhesion using 4DCT and deformable image registration program (MIMVista). The Y axis change was most significant and the mean Y axis centroid fluctuation was $7.32{\pm}6.88mm$ in lower lung tumor. The mean HU variation in lower lung mass has changed more than other locations, and its mean HU variation was $7.7{\pm}4.97%$ and non-adhered mass was more changed. Correlation for the mass volume between 3DCT and MIP was very high and its coefficient was 0.998. The effect of tumor location, adhesion and diaphragm excursion to geometric uncertainties was analyzed by linear regression model, it was influenced to mass deformation and geometrical variation so much except diaphragm excursion. but intra-fractional and inter-patient's uncertainties were great, so it couldn't find any exact deformation trend.

Wavelet Transform-based Face Detection for Real-time Applications (실시간 응용을 위한 웨이블릿 변환 기반의 얼굴 검출)

  • 송해진;고병철;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.829-842
    • /
    • 2003
  • In this Paper, we propose the new face detection and tracking method based on template matching for real-time applications such as, teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Since the main purpose of paper is to track a face regardless of various environments, we use template-based face tracking method. To generate robust face templates, we apply wavelet transform to the average face image and extract three types of wavelet template from transformed low-resolution average face. However template matching is generally sensitive to the change of illumination conditions, we apply Min-max normalization with histogram equalization according to the variation of intensity. Tracking method is also applied to reduce the computation time and predict precise face candidate region. Finally, facial components are also detected and from the relative distance of two eyes, we estimate the size of facial ellipse.

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

Flow Resistance and Modeling Rule of Fishing Nets 4. Flow Resistance of Trawl Nets (그물어구의 유수저항과 모형수칙 4. 트롤그물의 유수저항)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.691-699
    • /
    • 1997
  • In order to find out the properties in flow resistance of trawlR=1.5R=1.5\;S\;v^{1.8}\;S\;v^{1.8} nets and the exact expression for the resistance R (kg) under the water flow of velocity v(m/sec), the experimental data on R obtained by other, investigators were pigeonholed into the form of $R=kSv^2$, where $k(kg{\cdot}sec^2/m^4)$ was the resistance coefficient and $S(m^2)$ the wall area of nets, and then k was analyzed by the resistance formular obtained in the previous paper. The analyzation produced the coefficient k expressed as $$k=4.5(\frac{S_n}{S_m})^{1.2}v^{-0.2}$$ in case of bottom trawl nets and as $$k=5.1\lambda^{-0.1}(\frac{S_n}{S_m})^{1.2}v^{-0.2}$$ in midwater trawl nets, where $S_m(m^2)$ was the cross-sectional area of net mouths, $S_n(m^2)$ the area of nets projected to the plane perpendicular to the water flow and $\lambda$ the representitive size of nettings given by ${\pi}d^2/2/sin2\varphi$ (d : twine diameter, 2l: mesh size, $2\varphi$ : angle between two adjacent bars). The value of $S_n/S_m$ could be calculated from the cone-shaped bag nets equal in S with the trawl nets. In the ordinary trawl nets generalized in the method of design, however, the flow resistance R (kg) could be expressed as $$R=1.5\;S\;v^{1.8}$$ in bottom trawl nets and $$R=0.7\;S\;v^{1.8}$$ in midwater trawl nets.

  • PDF

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

Flow Resistance and Modeling Rule of Fishing Nets -1. Analysis of Flow Resistance and Its Examination by Data on Plane Nettings- (그물어구의 유수저항과 근형수칙 -1. 유수저항의 해석 및 평면 그물감의 자료에 의한 검토-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Assuming that fishing nets are porous structures to suck water into their mouth and then filtrate water out of them, the flow resistance N of nets with wall area S under the velicity v was taken by $R=kSv^2$, and the coefficient k was derived as $$k=c\;Re^{-m}(\frac{S_n}{S_m})n(\frac{S_n}{S})$$ where $R_e$ is the Reynolds' number, $S_m$ the area of net mouth, $S_n$ the total area of net projected to the plane perpendicular to the water flow. Then, the propriety of the above equation and the values of c, m and n were investigated by the experimental results on plane nettings carried out hitherto. The value of c and m were fixed respectively by $240(kg\cdot sec^2/m^4)$ and 0.1 when the representative size on $R_e$ was taken by the ratio k of the volume of bars to the area of meshes, i. e., $$\lambda={\frac{\pi\;d^2}{21\;sin\;2\varphi}$$ where d is the diameter of bars, 21 the mesh size, and 2n the angle between two adjacent bars. The value of n was larger than 1.0 as 1.2 because the wakes occurring at the knots and bars increased the resistance by obstructing the filtration of water through the meshes. In case in which the influence of $R_e$ was negligible, the value of $cR_e\;^{-m}$ became a constant distinguished by the regions of the attack angle $ \theta$ of nettings to the water flow, i. e., 100$(kg\cdot sec^2/m^4)\;in\;45^{\circ}<\theta \leq90^{\circ}\;and\;100(S_m/S)^{0.6}\;(kg\cdot sec^2/m^4)\;in\;0^{\circ}<\theta \leq45^{\circ}$. Thus, the coefficient $k(kg\cdot sec^2/m^4)$ of plane nettings could be obtained by utilizing the above values with $S_m\;and\;S_n$ given respectively by $$S_m=S\;sin\theta$$ and $$S_n=\frac{d}{I}\;\cdot\;\frac{\sqrt{1-cos^2\varphi cos^2\theta}} {sin\varphi\;cos\varphi} \cdot S$$ But, on the occasion of $\theta=0^{\circ}$ k was decided by the roughness of netting surface and so expressed as $$k=9(\frac{d}{I\;cos\varphi})^{0.8}$$ In these results, however, the values of c and m were regarded to be not sufficiently exact because they were obtained from insufficient data and the actual nets had no use for k at $\theta=0^{\circ}$. Therefore, the exact expression of $k(kg\cdotsec^2/m^4)$, for actual nets could De made in the case of no influence of $R_e$ as follows; $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})\;.\;for\;45^{\circ}<\theta \leq90^{\circ}$$, $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}\;.\;for\;0^{\circ}<\theta \leq45^{\circ}$$

  • PDF