• Title/Summary/Keyword: 큐비트 수 확장

Search Result 4, Processing Time 0.022 seconds

New QECCs for Multiple Flip Error Correction (다중플립 오류정정을 위한 새로운 QECCs)

  • Park, Dong-Young;Kim, Baek-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.907-916
    • /
    • 2019
  • In this paper, we propose a new five-qubit multiple bit flip code that can completely protect the target qubit from all multiple bit flip errors using only CNOT gates. The proposed multiple bit flip codes can be easily extended to multiple phase flip codes by embedding Hadamard gate pairs in the root error section as in conventional single bit flip code. The multiple bit flip code and multiple phase flip code in this paper share the state vector error information by four auxiliary qubits. These four-qubit state vectors reflect the characteristic that all the multiple flip errors with Pauli X and Z corrections commonly include a specific root error. Using this feature, this paper shows that low-cost implementation is possible despite the QECC design for multiple-flip error correction by batch processing the detection and correction of Pauli X and Z root errors with only three CNOT gates. The five-qubit multiple bit flip code and multiple phase flip code proposed in this paper have 100% error correction rate and 50% error discrimination rate. All QECCs presented in this paper were verified using QCAD simulator.

Research Trend for Quantum Dot Quantum Computing (양자점 큐비트 기반 양자컴퓨팅의 국외 연구 동향 분석)

  • Baek, Chungheon;Choi, Byung-Soo
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.79-88
    • /
    • 2020
  • Quantum computing is regarded as one of the revolutionary computing technologies, and has attracted considerable attention in various fields, such as finance, chemistry, and medicine. One of the promising candidates to realize fault tolerant quantum computing is quantum dot qubits, due to their expectation of high scalability. In this study, we briefly introduce the international tendencies for quantum dot quantum computing. First, the current status of quantum dot gate operations is summarized. In most systems, over 99% of single qubit gate operation is realized, and controlled-not and controlled-phase gates as 2-qubit entangling gates are demonstrated in quantum dots. Second, several approaches to expand the number of qubits are introduced, such as 1D and 2D arrays and long-range interaction. Finally, the current quantum dot systems are evaluated for conducting quantum computing in terms of their number of qubits and gate accuracies. Quantum dot quantum computing is expected to implement scalable quantum computing. In the noisy intermediate-scale quantum era, quantum computing will expand its applications, enabling upcoming questions such as a fault-tolerant quantum computing architecture and error correction scheme to be addressed.

Dynamic Core Affinity for High-Performance I/O Devices Supporting Multiple Queues (다중 큐를 지원하는 고속 I/O 장치를 위한 동적 코어 친화도)

  • Cho, Joong-Yeon;Uhm, Junyong;Jin, Hyun-Wook;Jung, Sungin
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.736-743
    • /
    • 2016
  • Several studies have reported the impact of core affinity on the network I/O performance of multi-core systems. As the network bandwidth increases significantly, it becomes more important to determine the effective core affinity. Although a framework for dynamic core affinity that considers both network and disk I/O has been suggested, the multiple queues provided by high-speed I/O devices are not properly supported. In this paper, we extend the existing framework of dynamic core affinity to efficiently support the multiple queues of high-speed I/O devices, such as 40 Gigabit Ethernet and NVM Express. Our experimental results show that the extended framework can improve the HDFS file upload throughput by up to 32%, and can provide improved scalability in terms of the number of cores. In addition, we analyze the impact of the assignment policy of multiple I/O queues across a number of cores.

Augmented Quantum Short-Block Code with Single Bit-Flip Error Correction (단일 비트플립 오류정정 기능을 갖는 증강된 Quantum Short-Block Code)

  • Park, Dong-Young;Suh, Sang-Min;Kim, Baek-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • This paper proposes an augmented QSBC(Quantum Short-Block Code) that preserves the function of the existing QSBC and adds a single bit-flip error correction function due to Pauli X and Y errors. The augmented QSBC provides the diagnosis and automatic correction of a single Pauli X error by inserting additional auxiliary qubits and Toffoli gates as many as the number of information words into the existing QSBC. In this paper, the general expansion method of the augmented QSBC using seed vector and the realization method of the Toffoli gate of the single bit-flip error automatic correction function reflecting the scalability are also presented. The augmented QSBC proposed in this paper has a trade-off with a coding rate of at least 1/3 and at most 1/2 due to the insertion of auxiliary qubits.