• Title/Summary/Keyword: 쾌적 실내온도

Search Result 109, Processing Time 0.036 seconds

The Study on the Effect of Passenger Coach temperature When Aircurtains Installed At Electrical Rolling Stock At Entrance Door (전동차 출입문에 에어커튼 설치시 객실 온도 변화 연구)

  • Ahn Jong-Kon;Kim Chul-Ho;Park Duk-Sin
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.489-496
    • /
    • 2004
  • The effect of airconditioning and heating system when aircurtains installed in subway electrical rolling stock at entrance door. It blocks cold/hot air of outside. It is good for health with its blocking effect against dusts exhaust fumes, odor bugs and smoke from outside. It always maintains clean and pleasant atmosphere inside. It helps you to have health with its ever-equal temperature distribution at inside. It saves lots of maintenance cost for heating/cooling (about 86$\%$) since it cuts the loss of hot air under heating as well as of cold air under air-conditionin. Customers can feel pleasant go in and out (better than before) with the door. It is an indispensable product for the employers to cut the cost. It makes customers feel pleasant near doors, since it isnt influenced by temperature difference of cold/hot air when the door opens/closes. In electrical rolling stock passenger temperature is a lot different from that the door opens/closes. One of the main aims is to create an acceptable thermal environment without draught problem. Temperature, gradients when aircurtains installed in subway electrical rolling stock at entrance door have been studied. And the temperature measured at 0.1, 0.5, 1.3, 1.7m above the floor. It has been found that temperature, with large fluctuations caused more draught influence.

  • PDF

e-Checking Indoor Enviromental Air Control Systems based on Fuzzy Theory (퍼지이론을 적용한 실내 환경측정 및 자동관리시스템)

  • Oh, Jun-Hwan;Ha, Seong-Min;Lee, Na-Hyeon;Kim, Da-Hyeong;Kim, Jin-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.592-594
    • /
    • 2017
  • 본 연구는 기존의 실내 환경 관리시스템의 단순함에 퍼지이론을 부가하여 지능적으로 관리하는 것을 제안한다. 이 장치는 실내의 온도, 습도, 공기 오염도를 센서를 사용하여 측정한 후, 이를 아두이노를 활용한 제어 프로그램으로 보낸다. 계절별 적정 환경을 기준으로 만든 퍼지 규칙을 통해 쾌적한 실내 환경을 만들 수 있도록 에어컨, 제습기, 공기청정기를 제어하여 자동으로 실내의 환경을 관리해주는 지능적인 IoT 환경을 구축한다.

  • PDF

A Study on the Indoor Thermal Environment of the Large Gymnasium Space in Winter - Without Heat Loads from Occupancy - (대규모 실내경기장의 동계 온열환경 특성 실측조사 - 인체부하 미고려 조건 -)

  • Choi, Dong-Ho;Jeong, Seong-Jin;Seok, Ho-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.67-77
    • /
    • 2007
  • The purpose of this study is to provide fundamental heating design data for the large public enclosures as gymnasium. This study executed indoor thermal environment verification of the existing gymnasium by measuring temperature distribution with and without heating the space in winter. Heating loads from human body was not considered. We examined various indoor thermal environment factors of the large enclosed space in this study which include vertical and horizontal temperature distribution, supply and return air flow feature, thermal comfort environment feature, amount of ventilation and etc.

  • PDF

Indoor Air Temperature Distribution in a Floor Heating Space with PCM Panels (잠열저장패널이용 바닥난방공간의 실내온도분포에 관한 연구)

  • Cho, Soo;Sohn, Jang-Yeul
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.59-71
    • /
    • 1992
  • The purposes of the present study are to investigate the characteristics of heat storage and emission of the PCM($CalCl_2{\cdot}6H_2O$) panel, and to analyze the distribution of indoor air temperature in a floor heating space with PCM panels for the heating system. Two identical unit test cells sized $1.8m^W{\times}1.8m^L{\times}1.8m^H$ were built and installed with specially designed aluminium Ondol-panels. It held 1.2kg of calcium chloride hexahydrate(CCH). It was found that PCM panels could reduce the indoor air temperature fluctuations and maintain the phase changing temperature for considerably long duration, $2{\sim}3$ times longer in heating hour over no-CCH one. When the elapsed time was 6 hours, the average temperature difference between PCM panel and Ondol panel was $7.7^{\circ}C$.

  • PDF

A Study on the Thermal Comfort Zone and Energy Use of Radiant Floor Heating by Residential Style and Clothing Level (생활특성과 착의량에 따른 바닥복사난방 공간의 열쾌적 범위 및 에너지 사용량에 관한 연구)

  • Kim, Sang-Hun;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • The purpose of this study is to provide the thermal comfort range according to the residential style and clothing level at radiant floor heating space, and compare the annual energy consumption and energy cost for each condition. Lower neutral point temperature has been stood for floor sitting style than chair sitting style, which appears that the thermal sensation was affected by local heat transfer between floor surface and the human body. The result of research indicates that neutral point temperature was in inverse proportion with the clothing level. It is interpreted that the increasing of clothing level results decrement of heat loss from human body, and is available to achieve same thermal comfort at lower room temperature. It was analyzed that the floor sitting style is more economical residential style than the chair sitting style, because the energy consumption of the floor sitting style is saved by 6.0% in average to compare with that of the chair sitting style. It is analyzed that energy consumption has been decreased by 13.5% with the clothing level of 1.2 Clo than with that of 1.0 Clo, and decreased by 18.0% than with that of 0.8 Clo, which explains that the energy saving can be achieved with the variation in life habit to increase the clothing level.

An Experimental Study on Heat Flow Characteristics of Inflowing Cool Air in the Room (실내(室內) 유입(流入) 냉기(冷氣)의 열유동(熱流動) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Jang, Y.G.;Pak, J.W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • A study on a buoyancy effect by the temperature difference between a inner room air and a inflowing cool air and also by Inlet velocity can contribute greatly to enhance performance of air conditioning system, so the study on the distribution characteristics of inflowed cool air is important to analyze the cool air storage in a room. For this study, in the real-sized model room, the temperature differences between inflowing cool air and inner room air are 10, 20, $30^{\circ}C$, and the inlet velocities of inflowing cool air are 1, 2, 3m/s respectively as dynamic parameters. Also, a anemos and a vane type diffuser are used as inlet geometric conditions. Following conclusions have been obtained through this study. 1) In case of the anemos type diffuser, it is found that a dimensionless temperature profile is low and the distribution of the inflowed cool air is uniform. and also, all diffuusers have a low temperature of the inner room as increasing the inlet velocity. 2) A mixing takes place rapidly in case of the anemos type diffuser when the temperature difference is low ${\Delta}T=10^{\circ}C$ and the inletvelocity is high V=3m/s. and the mixing degree is higher with the anemos type diffuser than the vane.

  • PDF

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer (여름철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Lee, C.H.;Bae, G.N.;Choi, H.C.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF

A Study on the Indoor Thermal Environment of the Large Gymnasium Space in Summer - Without Cooling Loads from Occupancy - (대규모 실내경기장의 하계 온열환경 특성 실측조사 - 인체부하 미고려 조건 -)

  • Jeong, Seong-Jin;Choi, Dong-Ho;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.91-101
    • /
    • 2007
  • The purpose of this study is to provide fundamental cooling design data for the large public enclosures as gymnasium. This study executed indoor thermal environment verification of the existing gymnasium by measuring temperature distribution with and without cooling the space in summer. Colling loads from human body was not considered. We examined various indoor thermal environment factors of the large enclosed space in this study which include vertical and horizontal temperature distribution, supply and return air flow feature, thermal comfort environment feature, amount of ventilation and etc.

  • PDF

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Indoor Air Quality in daycare facilities (보육시설의 실내공기질 유지관리 실태)

  • Park, Jun-Seok
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.6
    • /
    • pp.28-32
    • /
    • 2014
  • 본 투고에서는 2008년 환경부의 용역으로 실시된 "보육시설의 실내공기질 진단 및 개선 시범사업"의 결과를 바탕으로 우리나라 보육시설의 실내공기 오염 실태와 함께 개선방안, 그리고 개선효과에 대하여 소개하였다. 서울, 경기, 인천 지역의 61개 시설을 대상으로 실내공기질 측정과 설문조사를 실시한 결과 폼알데하이드와 총 휘발성유기화합물은 일부시설에서 "다중이용시설 등의 실내공기질 관리법" 기준치를 초과하는 것으로 나타났다. 반면 이산화탄소와 미세먼지는 조사 대상 시설 중 50 % 이상이 기준치를 초과하는 것으로 나타났다. 따라서 보육시설의 실내공기질 개선을 위해서는 각 오염물질의 발생원별로 유지관리 대책이 필요한 것으로 조사되었다. 또한 오염원인별 분석결과, 대부분 시설의 실외오염물질 농도가 실내보다 낮게 나타나 외기의 오염이 실내에 미치는 영향은 미비한 것으로 나타났으며, 계절에 따른 실내공기오염은 동절기에 낮은 외기온도로 인하여 실내를 하기 때문에 하절기에 비해 더 높게 나타났다. 공간에 따른 오염물질의 농도는 이산화탄소와 미세먼지의 경우 아동이 늘 상주하는 교실의 오염이 가장 심한 것으로 나타났으며 폼알데하이드와 총휘발성유기화합물의 경우 놀이실의 오염도가 교실에 비해 더 높게 나타났다. 개선방안별 개선효과에 있어서는 환기계획 몇 환기설비 설치, 지하공간 습기 문제 개선에서 가장 높은 효과가 나타났다. 향후 보육시설의 쾌적하고 건겅한 실내환경의 유지관리를 위해서는 보육종사자들이 활용할 수 있는 유지관리 지침 또는 매누얼에 대한 보급이 필요할 것으로 판단된다.