• 제목/요약/키워드: 쾌속조형공정

검색결과 91건 처리시간 0.028초

2단계 절단과 두개의 적층 기준형상을 이용한 전자동 VLM-$_{ST}$ 공정 개발에 관한 연구 (Investigation into the development of automatic VLM-$_{ST}$ process utilizing two step cutting and two reference shapes)

  • 안동규;이상호;김효찬;양동열;박승교
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.62-65
    • /
    • 2003
  • VLM-ST process requires an additional human interaction due to the manual stacking and bonding. Hence, building time, building cost and the part quality are dependent on the skill of labor. In this present work, a novel rapid prototyping (RP) process, as an automatic VLM-ST (VLM-STA), has been proposed to improve building efficiency of VLM-ST process and reliability of products. The apparatus of VLM-STA is designed to embody the process. Several characteristics of the proposed process and the apparatus are discussed. In order to examine the efficiency and the applicability of the proposed process, various three-dimensional shapes, such as a piston and a human head shape, are fabricated on the apparatus.

  • PDF

금속박판을 이용한 쾌속조형의 공정변수에 관한 연구 (A study on the Processing Variables of Rapid Prototyping using Sheet Metal)

  • 이상찬;박정남;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.42-45
    • /
    • 2003
  • The purpose of this study is the development or the extensive Rapid Prototyping Technique. which can resolve the long-term manufacturing process, shrinkage and deformation occurring rapid prototyping technique. To begin with. the various specimens for tensile were manufactured on the basis of this modeling technology. Then, many kinds of the laminate pieces for the test were made by using the sheet metals lmm and 1.5mm thickness which is composed of the same ingredient. The tensile specimen were manufactured by changing the process variables, Such as electric current, pressure and resistance welding time for the Rapid Prototyping with metal sheet. And then by using the Taguchi method. The interrelation between the specimen and mechanical properties were determined and the system for the optimum process variable organized.

  • PDF

쾌속조형 공정 비교실험 및 공정 선정에 관한 연구 (Benchmark Study of Rapid Prototyping Processes and the Development of Decision-support System to Select Appropriate RP Process and Machine)

  • 이일랑;정일용;최병욱;금영탁
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.202-209
    • /
    • 2005
  • In this paper, benchmark tests of Rapid Prototyping(RP) are presented to evaluate characteristics of various RP Systems and Processes, and several decision-support systems are developed to select RP Machine/Process suitable to user's requirements. Results of the RP benchmark tests are applied to the recently developed RP machines for the purpose of analyzing attributes such as dimensional accuracy, surface roughness, build cost, build time, and etc. Decision-making support systems are also developed, which contain not only new LCE (Linear Confidence Equation) algorithm but also modified PRES and MDS algorithm. Those algorithms are proved to be effective in that reasonably acceptable results are obtained on several cases of different inputs.

단속형 재료공급식 가변적층 쾌속조형공정 및 장치 개발에 관한 연구 (Investigation into Development of Transfer Type for Variable Lamination Manufacturing Process and Apparatus)

  • 안동규;이상호;최홍석;양동열;박승교
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.95-105
    • /
    • 2002
  • In order to reduce the lead-time and cost, the technology of rapid prototyping (RP) has been widely used. However, RP technologies have disadvantageous characteristics according to their working principle: low building speed, high cost for introduction and maintenance of RP apparatus, stair-stepped surface and additional post processing. A new rapid prototyping process, as a transfer type of Variable Lamination Manufacturing by using expandable polystyrene room (VLM-ST), has been developed to reduce building lime. apparatus cost including the introduction and the maintenance and additional post-processing. The objective of this study is to propose a VLM-ST process and to develop an apparatus for implementation of the process. Design criteria of the apparatus are defined and the techniques arc proposed to satisfy the design criterion. In order to examine the efficiency and applicability of the developed process, various three-dimensional shapes, such as a world-cup logo. a knob shape, an extruded cross, a twisted shape, a character, Son-o-kong. a helical gear shaped and a scissor shape are fabricated on the apparatus in which unit shape layer (USL) was generated to build up each layer.

단속형 가변적층쾌속조형공정을 이용한 3차원 스캔데이터로부터 3차원 시작품의 쾌속 제작 (Rapid Manufacturing of 3D Prototype from 3D scan data using VLM-ST)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.536-539
    • /
    • 2002
  • The reverse engineering (RE) technology can quickly generate 3D point cloud data of an object by capturing the surface of a model using a 3D scanner. In the rapid prototyping (RP) technology, prototypes are rapidly produced from 3D CAD models in a layer-by-layer additive basis. In this paper, a physical human head shape is duplicated using a new RP process, the Transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), after the point cloud data of a human head shape measured from 3D SNX scanner are converted to STL file. From the duplicated human head shape, it has been shown that the VLM-ST process in connection with the 3D scanner is a fast and efficient process in that shapes with free surface, such as the human head shape, can be duplicated with ease. Considering the measurement time and the shape duplication time, the use of 3D SNX scanner and the VLM-ST process is expected to reduce the lead-time fur the development of new products in comparison with the other existing RE-RP connected manufacturing systems.

  • PDF

역공학과 쾌속조형공정을 이용한 정형외과수술기법 개발에 관한 연구 (Investigation into the Development of Technology for Orthopeadic Surgery Utilizing Reverse Engineering and Rapid Prototyping Technology)

  • 안동규;이준영;양동열;한길영
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.188-196
    • /
    • 2004
  • The objective of this paper is to propose a new technology of the orthopaedic surgery using the combination of reverse engineering (RE) based on CT data and rapid prototyping (RP). The proposed technology utilizes symmetrical characteristics of the human body and capability of the combination of RE and RP, which rapidly manufactures three-dimensional parts from CT data. The original .stl data of injured extents are generated from the mirror transformation of .stl file fur uninjured extents. The physical shape before injuring is manufactured from RP using the original .stl data. Subsequently, pre-operative planning, such as a selection of proper implants, preforming of the implant, a decision of fixation locations and an insert position for the implant, an estimation of the invasive size, and pre-education of operators are performed using the physical shape. In order to examine the applicability and the efficiency of the proposed surgical technology, various case studies, such as a distal tibia commented fracture, a proximal tibia plateau fracture and an iliac wing fracture of pelvis, are carried out. From the results of case studies, it has been shown that the proposed technology is an effective surgical tool of the orthopaedic surgery reducing the operational time, the operational cost, the radiation exposure of the patient and operators, and morbidity. In addition, the proposed technology could improve the accuracy of operation and the speed of rehabilitation.

FDM에서 주사량 변화가 쾌속조형물의 표면거칠기에 미치는 영향 (Influence of Injection Amount Variation on Surface Roughness at FDM)

  • 하만경;전재억
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.54-59
    • /
    • 2002
  • The principle of the FDM(fused deposition modeling) process is based on the layer by layer manufacturing technology, like other RP(rapid prototyping) process. In the FDM process, each layer may have different shape. Therefore, the built model may have stairs shape on its surface. This stairs shape is one of the serious problems in the FDM process. Thus in this study, cube models and spherical models were fabricated by FDM process to investigate the influence of injection amount on surface roughness. Models with various road width were also built to investigate the influence of road width on surface roughness. Surface roughness of the models was measured and analyzed. The result obtained in this study are expected to help selecting the part build orientation for optimum surface roughness.

  • PDF

발포 폴리스티렌 폼을 이용한 가변 적층 쾌속 조형 공정 밀 장치 개발 (Development of Variable Lamination Manufacturing(VLM) Process and Apparatus by Using Expandable Polystyrene Foam)

  • 안동규;이상호;양동열;신보성;박승교;이용일
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.54-63
    • /
    • 2001
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of a part due to layer-by-layer stacking, low build speed caused by point-by-point or line-by-line solidification to build one layer, and additional posts processing to improve surface roughness, so high cost is required to introduce and to maintain the RP apparatus. The objective of this study is to develop a new RP process, Variable Lamination Manufacturing by using expandable polystyrene foam sheet as part material(VLM-S), and to design an apparatus for implementation of the process. So, the process parameters and design criterions of the apparatus were defined and the techniques were proposed to satisfy the design criterion. Based on the results, a knob-shape, pyramid shape. and a solid block were fabricated on the apparatus in which unit shape part(USP) was generated for building each layer.

  • PDF

가변 적층 쾌속 조형 공정 개발을 위한 단위형상조각 자동 생성 소프트웨어 개발 및 적용 예 (Software Development for Automatic Generation of Unit Shape Part for Variable Lamination Manufacturing Process)

  • 이상호;김태화;안동규;양동열;채희창
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.64-70
    • /
    • 2001
  • In all the Rapid Prototyping (RP) techniques, the computer-aided design (CAD) model of a three-dimensional part is sliced into horizontal layers of uniform, but not necessarily constant, thickness in the building direction. Each cross- sectional layer is successively deposited and, at the same time, bonded onto the previous layer. The stacked layers form a physical part of the model. The objective of this study is to develop a software for automatic generation of unit shape part(USP) for a new RP process, Variable Lamination Manufacturing using the linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S). In order to examine the applicability of the developed software to VLM-S, USPs of general three-dimensional shapes, such as an auto-shift lever knob and a pyramid shape were generated.

  • PDF

VLM-ST 공정에서 입체 절단을 이용한 대형 물체의 쾌속 제작 (Rapid Manufacturing of Large Object by Splitting Solid Model in VLM-ST)

  • 이상호;안동규;김효찬;양동열;채희창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.50-53
    • /
    • 2003
  • Most companies use technologies such as stereolithography, selective laser sintering, and fused deposition modeling to make parts for such small consumer products as telephones, heads, and shoes. The largest part that the existing RP systems can make is only 600 mm in length. Because most RP systems build parts by depositing, solidifying, or sintering material point-by-point, making larger objects takes a long time. and in many cases, large objects won't fit the build size. A new effective thick-layered RP process. Transfer type Variable Lamination Manufacturing using expandable polystyrene foam (VLM-ST) has been developed with thick layers and sloped surfaces. In this paper, a scaledown model of F16 Fighter with the length of 800 mm is rapidly fabricated using the VLM-ST process. In order to build a CAD model of F16 larger than 600 mm in length, the approach in VLM-ST is to build larger parts in multiple sub-parts and then glue them together. The fabricated result shows that the VLM-ST process employing thick layers and sloped surfaces is adequate for creating the real-sized large objects in the diverse fields such as automobiles, electric home appliances, electronics. and etc.

  • PDF