• Title/Summary/Keyword: 콘텐츠 추천 방법

Search Result 188, Processing Time 0.026 seconds

Social Network Based Music Recommendation System (소셜네트워크 기반 음악 추천시스템)

  • Park, Taesoo;Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.133-141
    • /
    • 2015
  • Mass multimedia contents are shared through various social media servies including social network service. As social network reveals user's current situation and interest, highly satisfactory personalized recommendation can be made when such features are applied to the recommendation system. In addition, classifying the music by emotion and using analyzed information about user's recent emotion or current situation by analyzing user's social network, it will be useful upon recommending music to the user. In this paper, we propose a music recommendation method that makes an emotion model to classify the music, classifies the music according to the emotion model, and extracts user's current emotional state represented on the social network to recommend music, and evaluates the validity of our method through experiments.

A Multimedia Recommender System Using User Playback Time (사용자의 재생 시간을 이용한 멀티미디어 추천 시스템)

  • Kwon, Hyeong-Joon;Chung, Dong-Keun;Hong, Kwang-Seok
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.111-121
    • /
    • 2009
  • In this paper, we propose a multimedia recommender system using user's playback time. Proposed system collects multimedia content which is requested by user and its user‘s playback time, as web log data. The system predicts playback time.based preference level and related contents from collected transaction database by fuzzy association rule mining. Proposed method has a merit which sorts recommendation list according to preference without user’s custom preference data, and prevents a false preference. As an experimental result, we confirm that proposed system discovers useful rules and applies them to recommender system from a transaction which doesn‘t include custom preferences.

  • PDF

An Ontology-Based Method for Calculating the Difficulty of a Learning Content (온톨로지 기반 학습 콘텐츠의 난이도 계산 방법)

  • Park, Jae-Wook;Park, Mee-Hwa;Lee, Yong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • Much research has been conducted on the e-learning systems for recommending a learning content to a student based on the difficulty of it. The difficulty is one of the most important factors for selecting a learning content. In the existing learning content recommendation systems, the difficulty of a learning content is determined by the creator. Therefore, it is not easy to apply a standard rule to the difficulty as it is determined by a subjective method. In this paper, we propose an ontology-based method for determining the difficulty of a learning content in order to provide an objective measurement. Previously, ontologies and knowledge maps have been used to recommend a learning content. However, their methods have the same problem because the difficulty is also determined by the creator. In this research, we use an ontology representing the IS-A relationships between words. The difficulty of a learning content is the sum of the weighted path lengths of the words in the learning content. By using this kind of difficulty, we can provide an objective measurement and recommend the proper learning content most suitable for the student's current level.

A Study of Recommending Service Using Mining Sequential Pattern based on Weight (가중치 기반의 순차패턴 탐사를 이용한 추천서비스에 관한 연구)

  • Cho, Young-Sung;Moon, Song-Chul;Ahn, Yeon S.
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.711-719
    • /
    • 2014
  • Along with the advent of ubiquitous computing environment, it is becoming a part of our common life style that the demands for enjoying the wireless internet using intelligent portable device such as smart phone and iPad, are increasing anytime or anyplace without any restriction of time and place. The recommending service becomes a very important technology which can find exact information to present users, then is easy for customers to reduce their searching effort to find out the items with high purchasability in e-commerce. Traditional mining association rule ignores the difference among the transactions. In order to do that, it is considered the importance of type of merchandise or service and then, we suggest a new recommending service using mining sequential pattern based on weight to reflect frequently changing trends of purchase pattern as time goes by and as often as customers need different merchandises on e-commerce being extremely diverse. To verify improved better performance of proposing system than the previous systems, we carry out the experiments in the same dataset collected in a cosmetic internet shopping mall.

A Study on Scientific Article Recommendation System with User Profile Applying TPIPF (TPIPF로 계산된 이용자프로파일을 적용한 논문추천시스템에 대한 연구)

  • Zhang, Lingling;Chang, Woo Kwon
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.1
    • /
    • pp.317-336
    • /
    • 2016
  • Nowadays users spend more time and effort to find what they want because of information overload. To solve the problem, scientific article recommendation system analyse users' needs and recommend them proper articles. However, most of the scientific article recommendation systems neglected the core part, user profile. Therefore, in this paper, instead of mean which applied in user profile in previous studies, New TPIPF (Topic Proportion-Inverse Paper Frequency) was applied to scientific article recommendation system. Moreover, the accuracy of two scientific article recommendation systems with above different methods was compared with experiments of public dataset from online reference manager, CiteULike. As a result, the proposed scientific article recommendation system with TPIPF was proven to be better.

The VOC category analysis using NPS investigation - case study NDSL - (NPS 조사 기반의 VOC 분석에 관한 연구)

  • Kim, Sang-Kuk;Ahn, Sung-Soo;Lee, Yong Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.281-282
    • /
    • 2014
  • 본 연구의 목적은 과학기술정보서비스에 대한 고객만족도를 기반으로 하여 충성고객을 예측할 수 있는 모델을 구축하는 것이다. 이를 위해 정보서비스를 경험한 최근 1년이내 한국가과학기술전자도서관(NDSL : National Digital Science Library)사이트를 이용한 회원을 대상을 조사를 하였으며, 조사목적은 NDSL 서비스의 추천지수 측정을 통하여 추천, 비추천 사유를 파악하기 위함이다. 조사방법은 전화조사(Telephone Interview)로 진행하고 표본 수는 500명의 의사결정자를 대상으로 측정하였다. 고객충성도는 NPS(Net Promoter Score, 순고객추천지수) 이론에 근거하여 하였다. 연구결과 고객만족도 수준에 따라 비추천고객, 추천고객을 예측할 수 있는 모델을 구축하였다. 이와 같은 연구결과는 인터넷 등 정보의 발달로 고객의 긍정적 또는 부정적인 구전이 급속도로 노출되는 환경에서 고객의 만족도를 관리함으로써 충성고객을 확보하는데 사전 예측자료로 활용될 수 있다.

  • PDF

Recommendation using Context Awareness based Information Filtering in Smart Home (스마트 홈에서 상황인식 기반의 정보 필터링을 이용한 추천)

  • Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.17-25
    • /
    • 2008
  • The smart home environment focuses on recognizing the context and physical entities. And this is mainly focused on the personalized service supplied conversational interactions. In this paper, we proposed the recommendation using the context awareness based information filtering that dynamically applied by the context awareness as well as the meta data in the smart home. The proposed method defined the context information and recommended the profited service for the user’s taste using the context awareness based information filtering. Accordingly, the satisfaction of users and the quality of services will be improved the efficient recommendation by supporting the distributed processing as well as the mobility of services. Finally, to evaluate the performance of the proposed method, this study applies to MovieLens dataset in the OSGi framework, and it is compared with the performance of previous studies.

Hot issue extraction method using FOAF and Social Network Analysis (FOAF및 소셜 네트워크 분석을 이용한 핫 이슈 추출 기법)

  • Wang, Qing;Sohn, Jongsoo;Chung, InJeong
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.531-534
    • /
    • 2010
  • 웹 2.0의 적극적인 도입에 따라 소셜 네트워크 기반 커뮤니티 사이트에서는 관련된 콘텐츠를 적절하게 추천하는 것은 중요한 문제로 부각되고 있으며 이로 인해 사용자들의 동향 및 이슈 추출 기법이 중요하게 작용하고 있다. 이러기 위해서 지금까지의 연구에서는 콘텐츠에 포함된 키워드 매칭 방법을 이용하고 있으나 사용자들 간의 연결 관계와 키워드의 중요도를 고려하지 못하고 있다. 본 논문에서는 FOAF 기반의 소셜 네트워크와 del.icio.us에서 제공하는 소셜 북마크 데이터를 기초로 소셜네트워크 분석을 보이며 이를 통한 사용자들 사이에서 중요하게 부각되는 핫 이슈를 추출하는 방법을 제안한다. 본 논문에서 제안하는 핫 이슈 추출 방법을 활용하면 사용자들의 관심 분야 동향파악을 효율적으로 수행할 수 있으며 이를 통해 맞춤형 마케팅 및 콘텐츠 추천이 가능해 진다.

Content recommendation system based on the collaborative filtering and big-data solutions for its commercialization (협업 필터링 기반의 콘텐츠 추천 시스템과 빅데이터 처리 솔루션을 이용한 상용화 개발 방향)

  • Choe, Seong-U;Han, Seong-Hui;Jeong, Byeong-Hui
    • Broadcasting and Media Magazine
    • /
    • v.19 no.4
    • /
    • pp.50-59
    • /
    • 2014
  • 사용자들이 미디어를 접하는 디바이스 환경이 다양화되고 그 속에서 접할 수 있는 콘텐츠의 양은 많아졌다. 특히 급속도로 발전한 모바일 환경에서 사용자들은 개인화된 기기를 사용하여 콘텐츠를 소비하고 주변 사용자들과 경험을 공유한다. 콘텐츠 제공 서비스에서는 이러한 개인의 콘텐츠 소비 이력 및 SNS 관계에서 발생한 데이터를 분석하여 활용함으로써 콘텐츠 소비를 활성화하고자 한다. KBS에서도 이러한 동향에 맞추어 방송콘텐츠 추천검색 연구와 실시간 TV캡처 및 소셜 공유 연구를 진행하였으며, 그 과정에서 많은 양의 데이터를 효율적으로 처리하기 위한 방법의 필요성을 절감하게 되었다. 데이터 분석이 필요한 두 과제에서 진행한 내용을 기술하고 대용량 데이터 처리기법을 활용하여 상용화 서비스를 구축할 계획을 소개한다.

TV Program Recommendation Method Using LDA Clustering (LDA 클러스터링을 이용한 TV 프로그램 추천 기법)

  • Park, Chang-yong;Chung, Yeounoh;Kim, Noo-ri;Lee, Jee-hyoung
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.272-274
    • /
    • 2013
  • 최근 TV 시청자들의 콘텐츠 소비량이 증가함에 따라 방송사에서 제공하는 TV 프로그램들의 수량이 방대해지고 장르 또한 다양해지고 있기 때문에 시청자가 TV 프로그램을 선택하는 것이 점점 더 어려워지고 있다. 이러한 문제를 해결하기 위해 TV 프로그램 추천이라는 연구가 활발하게 이루어지고 있다. 기존의 연구에서는 시청자를 기반으로 하는 협업 필터링 추천 방법과 아이템을 기반으로 하는 협업 필터링 추천 방법이 제안되었지만 시청자의 시청 의도를 고려하는 연구는 사례는 적다. 이에 본 논문에서는 LDA 모델링을 이용하여 사용자의 시청 의도를 고려한 TV 프로그램 추천 기법을 제안한다. 실험을 통해 시청자의 시청 의도가 반영된 TV 프로그램 추천이 가능하다는 것을 검증했다.