Mass multimedia contents are shared through various social media servies including social network service. As social network reveals user's current situation and interest, highly satisfactory personalized recommendation can be made when such features are applied to the recommendation system. In addition, classifying the music by emotion and using analyzed information about user's recent emotion or current situation by analyzing user's social network, it will be useful upon recommending music to the user. In this paper, we propose a music recommendation method that makes an emotion model to classify the music, classifies the music according to the emotion model, and extracts user's current emotional state represented on the social network to recommend music, and evaluates the validity of our method through experiments.
In this paper, we propose a multimedia recommender system using user's playback time. Proposed system collects multimedia content which is requested by user and its user‘s playback time, as web log data. The system predicts playback time.based preference level and related contents from collected transaction database by fuzzy association rule mining. Proposed method has a merit which sorts recommendation list according to preference without user’s custom preference data, and prevents a false preference. As an experimental result, we confirm that proposed system discovers useful rules and applies them to recommender system from a transaction which doesn‘t include custom preferences.
Journal of the Korea Society of Computer and Information
/
v.16
no.2
/
pp.83-91
/
2011
Much research has been conducted on the e-learning systems for recommending a learning content to a student based on the difficulty of it. The difficulty is one of the most important factors for selecting a learning content. In the existing learning content recommendation systems, the difficulty of a learning content is determined by the creator. Therefore, it is not easy to apply a standard rule to the difficulty as it is determined by a subjective method. In this paper, we propose an ontology-based method for determining the difficulty of a learning content in order to provide an objective measurement. Previously, ontologies and knowledge maps have been used to recommend a learning content. However, their methods have the same problem because the difficulty is also determined by the creator. In this research, we use an ontology representing the IS-A relationships between words. The difficulty of a learning content is the sum of the weighted path lengths of the words in the learning content. By using this kind of difficulty, we can provide an objective measurement and recommend the proper learning content most suitable for the student's current level.
Along with the advent of ubiquitous computing environment, it is becoming a part of our common life style that the demands for enjoying the wireless internet using intelligent portable device such as smart phone and iPad, are increasing anytime or anyplace without any restriction of time and place. The recommending service becomes a very important technology which can find exact information to present users, then is easy for customers to reduce their searching effort to find out the items with high purchasability in e-commerce. Traditional mining association rule ignores the difference among the transactions. In order to do that, it is considered the importance of type of merchandise or service and then, we suggest a new recommending service using mining sequential pattern based on weight to reflect frequently changing trends of purchase pattern as time goes by and as often as customers need different merchandises on e-commerce being extremely diverse. To verify improved better performance of proposing system than the previous systems, we carry out the experiments in the same dataset collected in a cosmetic internet shopping mall.
Journal of the Korean Society for information Management
/
v.33
no.1
/
pp.317-336
/
2016
Nowadays users spend more time and effort to find what they want because of information overload. To solve the problem, scientific article recommendation system analyse users' needs and recommend them proper articles. However, most of the scientific article recommendation systems neglected the core part, user profile. Therefore, in this paper, instead of mean which applied in user profile in previous studies, New TPIPF (Topic Proportion-Inverse Paper Frequency) was applied to scientific article recommendation system. Moreover, the accuracy of two scientific article recommendation systems with above different methods was compared with experiments of public dataset from online reference manager, CiteULike. As a result, the proposed scientific article recommendation system with TPIPF was proven to be better.
Proceedings of the Korea Contents Association Conference
/
2014.11a
/
pp.281-282
/
2014
본 연구의 목적은 과학기술정보서비스에 대한 고객만족도를 기반으로 하여 충성고객을 예측할 수 있는 모델을 구축하는 것이다. 이를 위해 정보서비스를 경험한 최근 1년이내 한국가과학기술전자도서관(NDSL : National Digital Science Library)사이트를 이용한 회원을 대상을 조사를 하였으며, 조사목적은 NDSL 서비스의 추천지수 측정을 통하여 추천, 비추천 사유를 파악하기 위함이다. 조사방법은 전화조사(Telephone Interview)로 진행하고 표본 수는 500명의 의사결정자를 대상으로 측정하였다. 고객충성도는 NPS(Net Promoter Score, 순고객추천지수) 이론에 근거하여 하였다. 연구결과 고객만족도 수준에 따라 비추천고객, 추천고객을 예측할 수 있는 모델을 구축하였다. 이와 같은 연구결과는 인터넷 등 정보의 발달로 고객의 긍정적 또는 부정적인 구전이 급속도로 노출되는 환경에서 고객의 만족도를 관리함으로써 충성고객을 확보하는데 사전 예측자료로 활용될 수 있다.
The smart home environment focuses on recognizing the context and physical entities. And this is mainly focused on the personalized service supplied conversational interactions. In this paper, we proposed the recommendation using the context awareness based information filtering that dynamically applied by the context awareness as well as the meta data in the smart home. The proposed method defined the context information and recommended the profited service for the user’s taste using the context awareness based information filtering. Accordingly, the satisfaction of users and the quality of services will be improved the efficient recommendation by supporting the distributed processing as well as the mobility of services. Finally, to evaluate the performance of the proposed method, this study applies to MovieLens dataset in the OSGi framework, and it is compared with the performance of previous studies.
웹 2.0의 적극적인 도입에 따라 소셜 네트워크 기반 커뮤니티 사이트에서는 관련된 콘텐츠를 적절하게 추천하는 것은 중요한 문제로 부각되고 있으며 이로 인해 사용자들의 동향 및 이슈 추출 기법이 중요하게 작용하고 있다. 이러기 위해서 지금까지의 연구에서는 콘텐츠에 포함된 키워드 매칭 방법을 이용하고 있으나 사용자들 간의 연결 관계와 키워드의 중요도를 고려하지 못하고 있다. 본 논문에서는 FOAF 기반의 소셜 네트워크와 del.icio.us에서 제공하는 소셜 북마크 데이터를 기초로 소셜네트워크 분석을 보이며 이를 통한 사용자들 사이에서 중요하게 부각되는 핫 이슈를 추출하는 방법을 제안한다. 본 논문에서 제안하는 핫 이슈 추출 방법을 활용하면 사용자들의 관심 분야 동향파악을 효율적으로 수행할 수 있으며 이를 통해 맞춤형 마케팅 및 콘텐츠 추천이 가능해 진다.
사용자들이 미디어를 접하는 디바이스 환경이 다양화되고 그 속에서 접할 수 있는 콘텐츠의 양은 많아졌다. 특히 급속도로 발전한 모바일 환경에서 사용자들은 개인화된 기기를 사용하여 콘텐츠를 소비하고 주변 사용자들과 경험을 공유한다. 콘텐츠 제공 서비스에서는 이러한 개인의 콘텐츠 소비 이력 및 SNS 관계에서 발생한 데이터를 분석하여 활용함으로써 콘텐츠 소비를 활성화하고자 한다. KBS에서도 이러한 동향에 맞추어 방송콘텐츠 추천검색 연구와 실시간 TV캡처 및 소셜 공유 연구를 진행하였으며, 그 과정에서 많은 양의 데이터를 효율적으로 처리하기 위한 방법의 필요성을 절감하게 되었다. 데이터 분석이 필요한 두 과제에서 진행한 내용을 기술하고 대용량 데이터 처리기법을 활용하여 상용화 서비스를 구축할 계획을 소개한다.
Park, Chang-yong;Chung, Yeounoh;Kim, Noo-ri;Lee, Jee-hyoung
Annual Conference of KIPS
/
2013.05a
/
pp.272-274
/
2013
최근 TV 시청자들의 콘텐츠 소비량이 증가함에 따라 방송사에서 제공하는 TV 프로그램들의 수량이 방대해지고 장르 또한 다양해지고 있기 때문에 시청자가 TV 프로그램을 선택하는 것이 점점 더 어려워지고 있다. 이러한 문제를 해결하기 위해 TV 프로그램 추천이라는 연구가 활발하게 이루어지고 있다. 기존의 연구에서는 시청자를 기반으로 하는 협업 필터링 추천 방법과 아이템을 기반으로 하는 협업 필터링 추천 방법이 제안되었지만 시청자의 시청 의도를 고려하는 연구는 사례는 적다. 이에 본 논문에서는 LDA 모델링을 이용하여 사용자의 시청 의도를 고려한 TV 프로그램 추천 기법을 제안한다. 실험을 통해 시청자의 시청 의도가 반영된 TV 프로그램 추천이 가능하다는 것을 검증했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.