Kim, Yong;Kim, Mun-Seok;Kim, Yoon-Beom;Park, Jae-Hong
Journal of the Korean Society for information Management
/
v.26
no.1
/
pp.81-105
/
2009
In this paper, we propose user contents using behavior and location information on contents on various channels, such as web, IPTV, for contents distribution. With methods to build user and contents profiles, contents using behavior as an implicit user feedback was applied into machine learning procedure for updating user profiles and contents preference. In machine learning procedure, contents-based and collaborative filtering methods were used to analyze user's contents preference. This study proposes contents location information on web sites for final recommendation contents as well. Finally, we refer to a generalized recommender system for personalization. With those methods, more effective and accurate recommendation service can be possible.
대용량 모바일 기기의 발전과 보급이 확산됨에 따라 사용자들은 사진, 음악, 동영상과 같은 멀티미디어 콘텐츠를 대량으로 휴대하며 이용할 수 있게 되었다. 그러나, 이러한 대량의 멀티미디어 콘텐츠 관리는 사용자 각자에게 맡겨져 있어 콘텐츠 관리를 어렵게 하고 있는 현실이다. 본 논문에서는 분산 모바일 환경에서 멀티미디어 콘텐츠의 공유와 추전을 통해 사용자에게 적합한 콘텐츠를 추천을 통해 제공하고, 제공된 콘텐츠는 모바일 동기화 서비스를 통해 모바일 기기로 저장하고 관리되는 '분산 모바일 환경에서 멀티미디어 콘텐츠 추전 및 검색 서비스'를 설계하고 구현하였다. 제안된 시스템은 사용자의 선호 프로파일 정보로 협업 필터링을 통해 공유된 멀티미디어 콘텐츠 중에서 사용자에게 적합한 콘텐츠를 추천해 주고, 추천된 콘텐츠는 모바일 기기 사용자의 행동에 따라 모바일 동기화 서비스를 통해 모바일 기기에 저장과 관리, 검색이 된다. 본 논문에서 제안된 방법은 추천과 검색을 통해 사용자 모바일 기기의 멀티미디어 콘텐츠를 효율적으로 관리 할 수 있다. 이처럼 본 논문에서 제안된 서비스 방법은 멀티미디어 콘텐츠의 추천과 모바일 동기화 서비스로 능동적인 콘텐츠 관리를 제공하며, 사용자에게 효율적인 콘텐츠 검색 기법과 활용 방법을 제공 할 수 있다.
Journal of the Korea Society of Computer and Information
/
v.16
no.7
/
pp.127-135
/
2011
It is required that an e-learning system has a content recommendation component which helps a learner choose an item. In order to predict items concerning learner's interest, collaborative filtering and content-based filtering methods have been most widely used. The methods recommend items for a learner based on other learner's interests without considering the knowledge level of the learner. So, the effectiveness of the recommendation can be reduced when the number of overall users are relatively small. Also, it is not easy to recommend a newly added item. In order to address the problem, we propose a content recommendation method based on the similarity and the difficulty of an item. By using a recommendation function that reflects both characteristics of items, a higher-level leaner can choose more difficult but less similar items, while a lower-level learner can select less difficult but more similar items, Thus, a learner can be presented items according to his or her level of achievement, which is irrelevant to other learner's interest.
As the volume of internet and web contents have shown an explosive growth in recent years, lately contents recommendation system (CRS) has emerged as an important issue. Consequently, researches on contents recommendation method (CRM) for CRS have been conducted consistently. However, traditional CRMs have the limitations in that they are incapable of utilizing in web 2.0 environments where positions of content creators are important. In this paper, we suggest a novel way to recommend web contents of high quality using both degree of centrality and TF-IDF. For this purpose, we analyze TF-IDF and degree of centrality after collecting RSS and FOAF. Then we recommend contents using these two analyzed values. For the verification of the suggested method, we have developed the CRS and showed the results of contents recommendation. With the suggested idea we can analyze relations between users and contents on the entered query, and can consequently provide the appropriate contents to the user. Moreover, the implemented system we suggested in this paper can provide more reliable contents than traditional CRS because the importance of the role of content creators is reflected in the new system.
KIPS Transactions on Software and Data Engineering
/
v.10
no.10
/
pp.399-406
/
2021
With the steady growth of the content industry, the need for research that automatically recommending content suitable for individual tastes is increasing. In order to improve the accuracy of automatic content recommendation, it is needed to fuse existing recommendation techniques using users' preference history for contents along with recommendation techniques using content metadata or features extracted from the content itself. In this work, we propose a new graph-based music recommendation method which learns an LSTM-based classification model to automatically extract appropriate tagging words from sound data and apply the extracted tagging words together with the users' preferred music lists and music metadata to graph-based music recommendation. Experimental results show that the proposed method outperforms existing recommendation methods in terms of the recommendation accuracy.
Journal of the Korean Society for information Management
/
v.23
no.3
s.61
/
pp.91-125
/
2006
Recent advancements in information technology and the Internet have caused an explosive increase in the information available and the means to distribute it. However, such information overflow has made the efficient and accurate search of information a difficulty for most users. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Libraries and information centers have been in the forefront to provide customized services to satisfy the user's information needs under the changing information environment of today. The aim of this study is to propose an efficient information service for libraries and information centers to provide a personalized recommendation system to the user. The proposed method overcomes the weaknesses of existing systems, by providing a personalized hybrid recommendation method for multimedia contents that works in a large-scaled data and user environment. The system based on the proposed hybrid method uses an effective framework to combine Association Rule with Collaborative Filtering Method.
Journal of Korea Society of Industrial Information Systems
/
v.24
no.6
/
pp.11-24
/
2019
The tendency of buyers of web information is changing from the cost-effectiveness to the cost-satisfaction. There is such tendency in the recommendation of multimedia contents, some of which are folksonomy-based recommendation services using mood. However, there is a problem that they does not consider synonyms. In order to solve this problem, some studies have solved the problem by defining 12 moods of Thayer model as AV values (Arousal and Valence), but the recommendation performance is lower than that of a keyword-based method at the recall level 0.1. In this paper, we propose a method based on using mood vector of multimedia contents. The method can solve the synonym problem while maintaining the same performance as the keyword-based method even at the recall level 0.1. Also, for performance analysis, we compare the proposed method with an existing method based on AV value and a keyword-based method. The result shows that the proposed method outperform the existing methods.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.362-365
/
2006
인터넷 사용자가 급증함에 따라 온톨로지를 이용한 지능형 웹이나 인터넷 사용자에게 개인 맞춤형 서비스를 제공하기 위한 다양한 연구가 진행되고 있다. 대표적인 예로 문맥광고는 인터넷 사용자들이 뉴스나 커뮤니티 사이트에서 콘텐츠를 조회하고, 해당 콘텐츠와 일치하거나 관련성이 높은 제품 또는 서비스 정보를 제공하는 광고기법이다. 그러나 문맥 광고는 사용자에게 다양한 콘텐츠 및 사이트 추천 서비스를 제공하지 못하고 있다. 따라서 다양한 콘텐츠 및 사이트 추천 서비스를 제공하기 위해 본 논문에서는 사용자가 조회한 콘텐츠의 내용을 대표할 수 있는 중요 키워드를 선정하고, 콘텐츠 내에서 추출된 키워드간의 연관성을 분석하여 관련 콘텐츠 및 사이트를 추천하는 방법에 대해 제안한다. 또한 연관키워드리스트 생성방법을 고속연관규칙을 이용하여 처리속도를 줄이고, 사용자가 선호할 만한 다양한 콘텐츠와 관련된 사이트를 제공하는 방법에 대해 제안한다.
In content consumption environment with various live TV channels, VoD contents and web contents, recommendation service is now a necessity, not an option. Currently, various kinds of recommendation services are provided in the OTT service or the IPTV service, such as recommending popular contents or recommending related contents which similar to the content watched by the user. However, in the case of a content viewing environment through TV or IPTV which shares one TV and a TV set-top box, it is difficult to recommend proper content to a specific user because one or more usage histories are accumulated in one subscription information. To solve this problem, this paper interprets the concept of family as {user, time}, extends the existing recommendation relationship defined as {user, content} to {user, time, content} and proposes a method based on deep learning algorithm. Through the proposed method, we evaluate the recommendation performance qualitatively and quantitatively, and verify that our proposed model is improved in recommendation accuracy compared with the conventional method.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.55-58
/
2012
본 논문은 사용자의 각종 멀티미디어 콘텐츠 소비 히스토리를 수집하여 체계화 및 패턴 분석을 수행하고, 이를 바탕으로 사용자가 선호할 것으로 예측되는 멀티미디어 콘텐츠들을 추출하여 제공하는 콘텐츠 추천 시스템에 관한 연구이다. 본 논문에서는 콘텐츠 소비와 연관된 사용자 로그와 엔진에서 자동 추출한 사용자 그룹을 통하여 콘텐츠 추천을 수행한다. 각 사용자들의 선호정보 데이터를 분석하여 선호정보 패턴이 유사한 사용자들을 사용자 그룹으로 정의하고, 각 사용자들이 속한 사용자 그룹의 사용자 로그를 활용하여 사용자별 선호 콘텐츠를 예측한다. 본 시스템은 웹 또는 모바일 환경에서 음악, 방송, 광고, 기사 등의 방대하고 다양한 콘텐츠를 복합적으로 사용자들에게 선별하여 제공해 주며, 이들의 연관성과 사용자의 콘텐츠 선호패턴을 반영한 개인 맞춤형 콘텐츠 추천 엔진은 사용자가 선호할만한 콘텐츠들을 추천하여 사용자의 콘텐츠 소비 시의 만족도를 높여줄 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.