• Title/Summary/Keyword: 콘크리트-강재 연결부

Search Result 39, Processing Time 0.023 seconds

Inelastic Behavior of Beam-Column Joints Composed of RC Column and RS Beams (RC 기둥과 RS 보로 이루어진 보-기둥 접합부의 비탄성 거동)

  • 김욱종;윤성환;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.734-741
    • /
    • 2002
  • An experimental study was carried out for beam-column joints composed of RC column and RS beams. The purpose of this study is to examine the inelastic seismic behavior for the RC-RS connection. Two interior and one exterior beam-column assemblies with variable moment ratios were tested. Experimental results showed that strength and deformability except stiffness were satisfactory. It is considered that the lack of stiffness was due to the slipping of steel beam from RS beam. The behavioral characteristics of the RC-RS connection were evaluated according to the quideline suggested by Hawkins et al. Nominal strength at 5 % joint distortion was not satisfactory, but all the other requirements, such as strength preserving capability, energy dissipation, and initial stiffness and strength ratios after peak load were satisfactory compared with the guideline. Thus it was concluded that the RC-RS connections can maintain ductility with excellent energy-dissipating capacity if being provided with appropriate reinforced structural system such as RC core wall for the initial lateral stiffness.

Behavior of Steel Plate Girder Using Slab Anchor (Slab Anchor를 사용한 판형교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Park, Nam-Hoi;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.105-113
    • /
    • 2002
  • Steel-Concrete composite girders have been used since early in the 1920's due to their advantages, which are lower weight, increasement of stiffness, slenderness, long span. However, in designing short to continuous composite bridges, negative moment occurs in mid-support and creates problems such as cracks in the concrete slab. Therefore, partially composite bridges are considered. In this time, slab-anchor is used in these. If the stiffness of shear connectors is insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, the evaluation of initial shear stiffness of slab-anchor in composite bridges is obtained from Push-Out specimen. Also, finite element analyses which uses the initial shear stiffness of slab-anchor got the experiment are carried out on simple composite girder and continuous composite girder. Futhermore, the ratio of composite according to various shear stiffness are investigated and the classification according to the ratio of composite is proposed.

Development of Precast Concrete Method for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙형 단면의 프리캐스트 에코필라 사방댐 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.542-552
    • /
    • 2018
  • In this paper, the precast method of a concrete eco-pillar debris barrier was proposed to improve the construct ability and economic efficiency. The performance was validated by experimental and structural analysis. The steel debris barrier has a high construction cost and causes environmental damage with corrosion. The construction of a concrete eco-pillar debris barrier has been increased recently. On the other hand, there are no design standards regarding debris barriers in Korea, and debris barriers are being designed by the experience and sense of engineers. Therefore, in this study, a method to determine the design external forces was proposed and the design was performed by applying a hollow cross-section to the debris barrier. In addition, three types of connection methods of a concrete cantilever column with the maximum bending moment acts were proposed, and validation of the performance of each type was performed with a real-scale experiment. The experimental results showed that the type with loop reinforcement had the highest rigidity and the type with anchorage performance exceeded the maximum bending moment according to the ultimate load. In the manufacturing procedure of mock-up debris barriers, the type with an anchorage-bar was found to have superior construct ability.

Evaluation of Structural Performance of Precast Prefabricated Bridge Column using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 조립식 교각의 성능 평가)

  • Chung, Chul-Hun;Yun, Yeon-Suk;Whang, Eun-Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.383-390
    • /
    • 2008
  • A Precast Prefabricated Bridge Column using steel tube and prestressing bar was proposed for the application of precast method on substructure. A column specimen designed by the proposed bridge column system was made and performed a quasi-static test. The failure mode appeared to be a flexural failure and there is no damage on column segment connection. And it is good use of the self-centering ability by prestressing force. Test results showed that a column specimen satisfy the earthquake specification, and the structural stability was verified. Nonlinear finite element analysis was performed and compared with the test results. Force-displacement relation and location of crack from the analysis results were compared with the test results and it agreed well. The quantitative analysis was also performed by a parametric study using this modeling technique.

Advanced C.I.P Method to Use the Steel-Casing with Inner Joint (조인트 부착 강관 케이싱을 이용한 개량형 C.I.P 공법)

  • Jang, Seoyong;Choi, Jaesoon;Song, Byungwoong;Choi, Yoonyoung;Yoon, Joongsan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2012
  • In this study, practical verifications for an advanced C.I.P(Cast in Place Pile) construction method were carried out. The structural characteristics of the method is to attach an angular joint in the steel-casing. This joint plays an important role in boring vertically, connected pile to pile, and protects the permeation of the ground water. For verifications, experimental research and numerical analysis were performed. In the experimental research, two model-tests were set up with the real scale steel-casing. One is to examine the leakage in the joint of piles and the other is to compare earth pressures in the front and the joint, respectively. In addition, 3 point bending test and compressive loading test were carried out and numerical analysis was performed to simulate the loading test. As a result of model-tests, the leakage in the pile joints was not shown up to 300 KPa of water pressure and stress concentration in the joint is out of the question. From the results of bending and compressive test, it was found that the new advanced C.I.P method is more convenient and superior than the conventional method.

Evaluation of Vibration and Structural Performance of an Innovative Sliding Step Steel Stair Using Full-Scale Mock-up Test (실물대 목업실험에 의한 슬라이딩스텝 철골계단의 진동 및 구조성능 평가)

  • Kim, Sung Yong;Lee, Cheol Ho;Kim, Na Eun;Cho, Sung Sang;Chung, Woon Ok
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.511-522
    • /
    • 2014
  • In this study, an innovative steel stair system is presented which enables rapid erection and high quality control in both residential and office building construction. This system features two lightweight steel stringers of box shape, bolted connections easy to absorb construction tolerance, and stair steps movable transversely (or sliding steps) such that the work space needed for concrete stairway wall could be easily provided. In this type of stairway system, other than providing robust connecting details, ensuring vibration performance is especially important since this system may be vibration-sensitive due to lightweight nature and/or probable low damping. To tackle these issues, a series of full-scale mock-up tests were conducted by using box-shape stringer members with or without concrete-fill. The connection system was shown to be sufficiently stiff and strong, or it remained elastic even under the 160% of service load level. Among the seven stringer alternatives, five exhibited satisfactory vibration performance according to the related North American and European acceptance criteria.

Static Behavior of Stud Shear Connector for UHPC Deck (초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동)

  • Lee, Kyoung-Chan;Kwark, Jong-Won;Park, Sang-Hyeok;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • Typical composite girder has been composed with conventional concrete deck and steel girder. Recently, ultrahigh-performance-concrete (UHPC) deck is proposed in order to enhance durability and reduce weight of deck as well as to increase stiffness and strength of the composite girder. This study investigates that a headed stud is still compatible as a shear connector for the UHPC deck and steel girder composite beam. Twelve push-out specimens are prepared to evaluate the static strength of stud shear connectors embedded in the UHPC deck. The test program proves that the static strength of the stud shear connectors embedded in UHPC well meets with design codes described in AASHTO LRFD. Chosen experimental variables are aspect ratio of height to diameter of stud, thickness of deck and thickness of concrete cover over the head of stud. From the test program, aspect ratio and cover thickness are investigated to mitigate the regulations of the existing design codes. The minimum aspect ratio and the minimum cover thickness given in AASHTO LRFD are four and 50mm, respectively. This limitation hinders to lower the thickness of the UHPC deck. The results of the experiment program give that the aspect ratio and the cover thickness can be lower down to three and 25mm, respectively. Eurocode-4 regulates characteristic relative slip at least 6mm. However, test results show that stud shear connectors embedded in UHPC provide the characteristic relative slip only about 4mm. Therefore, another measures to increase ductility of stud should be prepared.

Analysis of a Load Carrying Behavior of Shear Connection at the Interface of the Steel-Concrete Composite Beam (합성보 전단연결부의 구조거동에 대한 비교 분석)

  • Shin, Hyun Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.737-747
    • /
    • 2005
  • The connection of the slab with the steel beam and thus, the transmission of shear force at the interface of the steel-concrete composite beams is achieved with shear connectors, in general, with shear studs. The composite action through these shear studs has a significant influence on the load carrying behavior of the composite beams. The load carrying capacity of studs is determined through push-out tests. At present, the transferability of this load carrying capacity of studs to composite beams, especially in cases of partial interaction, is being questioned by experimental and theoretical investigations. In this study, a finite element model for the simulation of the behavior of the standard push-out specimen and the composite beams without the implementation of the load-slip curve of the stud connectors from the push-out test is developed. The load carrying behavior of the studs in the composite beams is estimated and compared with the results of the push-out test. The reason for the difference in the load carrying behavior of the studs in the push-out test specimen and in the composite beams is found.

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.