• Title/Summary/Keyword: 콘크리트 터널

Search Result 451, Processing Time 0.022 seconds

A study of tunnel concrete lining design using the ground-lining interaction model with the interface element (계면요소를 이용한 지반-라이닝 상호작용 모델에 의한 터널 콘크리트 라이닝 연구)

  • Huh, Do-hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.575-586
    • /
    • 2015
  • In NATM tunnel, the Ground-Lining Interaction model(GLI model) had been proposed a one of the numerical analysis as the ground load estimation method of the concrete lining. But this model was not applied with the interface mechanism between the ground and the support member or concrete lining. Therefor in this study, it is implemented as a model for closer than actual states that the interface element applied to the existing GLI model. And the modified GLI formula is proposed with the ground load estimation that is from the numerical results for each ground and rock cover conditions. Based on the numerical results, the ground load acting on concrete lining is reduced to ave. 88~106% in case of IV ground condition and ave. 47~57% in case of weathered soil condition comparing with the existing GLI model. It can be anticipated that the results obtained from this study can be applied to an estimation of the ground load on the concrete lining modeled like as real states, consistent and economical design.

Study on the optimal construction of a concrete lining in a weathered rock (풍화암지반에 시공되는 콘크리트라이닝의 적정시공에 관한 연구)

  • Kim, Hyeongkeon;Lee, Chul;Lee, Sun-Woo;Park, Jun-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.33-47
    • /
    • 2015
  • Concrete lining in tunnel construction is used as secondary support for downward loads when primary support decays. The use of concrete lining varies greatly depending on the intentions of engineer and/or client. An engineer uses much smaller deformation modulus which determines the concrete lining thickness than of a pattern 3, when supporting patterns 4 and 5 are used in a weathered rock and soil. Considering these conditions, this study intends to suggest optimal construction procedures through a back analysis using a computer program(MIDAS-civil). Cases of Seoul Subway System line${\bigcirc}{\bigcirc}$ zone${\bigcirc}{\bigcirc}$ were selected to be examined for this study. The results show that it is possible to reduce the thickness of concrete lining. When results from this study were applied to Seoul Metropolitan subway construction projects, it is expected to bring economic benefits.

Investigation of the Lining Load Induced by Backfill and Consolidation Grouting (배면 및 압밀그라우팅에 의한 터널 라이닝 하중 연구)

  • 박동순;김학준;김완영
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.445-456
    • /
    • 2003
  • Backfill grouting and consolidation grouting are major reinforcing methods that enhance the stability of tunnel by filling the gap between the tunnel lining and the ground and increasing the stiffness of the ground. However, the effect of the grouting on the tunnel lining is not well established. Field measurements such as pressuremeter test, Lugeon test, and lining instruments were peformed to analyze the grouting effect on the tunnel lining for a waterway tunnel. The elastic modulus was increased up to 5 times than that of original rock mass due to consolidation grouting. This study shows that only 10% of grout pressure was acting on the back face of the tunnel lining. The final results are expected to be used for the design of the concrete lining.

A study on the structural behaviour of shotcrete and concrete lining by experimental and numerical analyses (숏크리트 및 콘크리트 라이닝의 역학적 거동에 관한 실험 및 수치해석적 연구)

  • 김재순;김영근
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.307-320
    • /
    • 1998
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause many problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. In this study, mechanical behaviour of a tunnel lining was examined by model tests and by numerical analyses. Especially the model test was examined for double linings including shotcrete and concrete lining. The model tests were carried out under various conditions taking different loading shapes, horizontal stresses, thicknesses of linings and double lining, vault opening behind the concrete lining and rock-like medium surrounding the lining. Due to horizontal stress, compressive stress prevailed on the lining. Thus the bearing capacity of the lining increased. The existence of a vault opening behind the concrete lining reduced the bearing capacity by the similar amount of reduction of concrete lining thickness. Rock-like medium cast around the side wall of the lining restrained the deflection of the lining, and the bearing capacity for cracking and failure increased vary much. In numerical analyses a algorithm which can analysis the double lining by introduction of interface element was developed. And the results of the numerical analyses were compared with the results of the model tests.

  • PDF

An optimal mix design of sound absorbing block on concrete ballast in urban train tunnel (도시철도 터널내 콘크리트 도상용 흡음블럭의 최적 배합설계)

  • Lee, Hong-Joo;Oh, Soon-Taek;Lee, Dong-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • As spreading of train concrete ballast leads to the increase resounding friction noise, an porous sound absorbing block is applied in urban train tunnel as a counterparts against the friction noise. Three steps of major variables tests for an optimal mix design of the block are conducted to pursue the light weight of the block. Pilot property tests of the block for the cases of the fly-ash only as lightweight aggregates are carried satisfying KRT(Korean Rail Transit) and new KRS(Korean Railway Standards). Based on the results of pilot tests, required structural strength and admixture effects are evaluated. Additionally, typical lightweight aggregates are replaced so that lightweight and strength are improved for serviceability of poor working conditions and proper maintenance in urban train tunnel.

Investigation of the surface treatment method for silent pavement in tunnels (터널 내 주행소음 저감을 위한 포장표면처리공법에 관한 조사연구)

  • Park, Tae-Soon;Ko, Seok-Beam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.371-388
    • /
    • 2003
  • The tunnels that longer than 2km which have been recently constructed have serious noise problems resulting from the friction of vehicle wheels and pavement. In special, concrete pavement inside tunnels with a closed characteristic increases discomfort due to the traffic noise and the dust of pavement pollutes the air in tunnels. Therefore, it is urgent that we find out ways to cope with. This study purported to reduce noise inside tunnels covers the investigation of various pavement surface treatment methods adapted in developed countries, the analysis of the effect in noise reduction and construction methods and cases. The surface treatment method for silent pavement in tunnels reduced noise to 5dB (A)~10dB (A). Aggregate treatment method is evaluated the most appropriate method in that, related with other surface treatment method, it reduces noise and improves skid resistance. It is necessary for us to introduce equipments and design and rearrange of specification for the development of the silent pavement method in Korea.

  • PDF

A Study on the Behavior of Cut and Cover Tunnel according to the Excavation Plane by Numerical Analysis (굴착사면 변화에 따른 복개 터널구조물의 역학적 거동에 관한 수치해석적 연구)

  • Bae, Gyu-Jin;Lee, Seok-Won;Lee, Gyu-Phil;Park, Si-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.79-90
    • /
    • 2002
  • The structural analysis such as rigid frame analysis has been used for the design of cut and cover tunnel due to its simplicity and convenience. This analysis, however, could not account for the geometrical factors such as interface elements, slope of excavation plane, distance between lining and excavation plane, etc. To develop the analysis technique and design technology for the cut and cover tunnel, in this study, the numerical analyses considering not only geometrical but geotechnical factors are conducted. Especially, the effects on the mechanical behaviors of cut and cover tunnel due to the slope of excavation plane and the distance between lining and excavation plane are mainly focused in this study.

  • PDF

Research of Early-age Strength Development Technology for Remove the Steel Form of Large-wide Tunnel Lining Concrete (대단면 터널 라이닝 거푸집의 조기 제거를 위한 초기 강도 발현 기법 연구)

  • Kim, Kwang-Don;Lee, Deuk-Bok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.116-127
    • /
    • 2014
  • The studies were carried out to process one cycle for a day to the large section tunnel lining concrete. Climatic characteristics of the tunnel inside are changed, when the temperature of the concrete placement is low, the mold remove time is increased that the heat of hydration speed be delayed because affects the strength development, to compensate for this, after installing the curing sheet on both sides of the steel form and installation of tunnel entrance, when it comes to providing the additional heat source of $28{\pm}2^{\circ}C$ therein, it was to be achieved early strength development control standards (4.5MPa) presented as a crack control scheme or more, thus, It was able to remove after age of 14hr from mold. On the other hand, under the conditions of $10{\pm}1^{\circ}C$ that a natural curing temperature in the tunnel, it was analyzed must ensure the curing time of 36hr or more after concrete placement. Throughout this study, the concrete strength development and the temperature in the early-age concrete, it can find that reverify the curing temperature is greatly affected, even concrete fly ash is mixed 10%, if it is possible to raise the surface temperature for a predetermined time, is not a problem in the early strength development.