• Title/Summary/Keyword: 콘크리트 재료모델

Search Result 399, Processing Time 0.024 seconds

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.

Effect of Aging Parameters on Seismic Response of RC Shear Wall by Sensitivity Analysis (민감도해석을 이용한 철근콘크리트 전단벽 열화변수의 지진응답 영향)

  • Park, Jun-Hee;Choun, Young-Sun;Choi, In-Kil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.665-668
    • /
    • 2011
  • 철근콘크리트 구조물은 타설 후 시간이 경과함에 따라 물리적인 요인과 화학적인 요인으로 인하여 열화가 발생한다. 열화를 고려한 구조해석에서 모든 열화 관련 변수를 고려하는 것은 비효율적이다. 따라서 구조물의 거동과 밀접한 관련이 있는 중요열화변수를 정의하는 것이 필요하다. 본 연구에서는 철근콘크리트 전단벽의 경년열화 해석시 중요변수를 고려하기 위하여 민감도해석을 수행하였다. 해석결과에 의하면 재료의 경화와 관련한 변수들이 열화와 관련한 변수들보다 지진응답이 민감하게 나타났다. 해석모델의 낮은 철근비로 인하여 콘크리트의 탈락에 의한 지진응답의 변화보다 철근의 단면손실에 의한 지진응답의 변화가 크게 나타났다. 만약 원전과 같이 철근비가 높은 전단벽에서는 철근의 단면손실도 지진응답에 대한 중요변수가 될 수 있을 것으로 사료된다.

  • PDF

Modeling of Real-time Concrete Compressive Strength Reduction Management System According to Water Reducing Ratio (감수율에 따른 실시간 콘크리트 압축강도 저하 관리시스템 모델링)

  • Kim, Joon-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.107-109
    • /
    • 2022
  • 본 논문은 건설구조물 안전의 가장 중요한 요소 중 하나인 콘크리트 압축강도 안정성을 확보하기 위한 시스템으로, 콘크리트 구조물을 만들 재료인 레미콘의 수분 감소율에 따른 압축강도 감소 리스크를 관리할 수 있는 모델을 제시하였다. 동일한 물,시멘트비(W/C)로 생산된 레미콘은 현장타설시까지 교통환경으로 인한 도착시간 지연 및 강우, 강설 등 외부적인 요건으로 감수율이 발생하는 리스크가 발생한다. 이로 인해 콘크리트의 압축강도가 저감하는 중대한 문제가 발생한다. 본 연구에서 제시한 알고리즘을 이용하여 현장 타설전 콘크리트 시료의 함수율을 측정하여 감수율이 발생한 제품 발견시, 실시간으로 Operator로 GCM 기반의 Push Alarm을 전송하여 감수율이 반영된 제품을 제공함으로써 구조물의 안전성을 확보할 수 있는 시스템을 모델링하였다. 본 연구는 기존시스템의 문제점을 실시간으로 개선할 수 있는 것으로 건설현장의 구조물 안정성 확보에 효과가 클 것으로 기대된다.

  • PDF

Development of Modified Effective Crack Model to Take into Account for variation of Poisson's ratio and Low-Temperature Properties of Asphalt Concrete (포아슨 비의 변화를 고려한 수정 ECM 모델 개발 및 아스팔트 콘크리트의 저온 특성 연구)

  • Keon, Seung-Zun;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.185-197
    • /
    • 2001
  • This paper dealt with modification of effective crack length model (ECM) by adding Poisson's ratio term to evaluate fracture toughness of asphalt concrete which varies its material property by temperature. The original ECM model was developed for solid materials, such as cement concrete, and Poisson's ratio of materials was not considered. However, since asphalt concrete is sensitive to temperature variation and changes its Poisson's ratio by temperature, it should be taken into consideration to know exact fracture property under various temperatures. Four binders, including 3 polymer-modified asphalt (PMA) binders, were used to make a dense-grade asphalt mixture and 3-point bending test was peformed on notched beam at low temperatures, from -5oC to 35oC. Elastic modulus, flexural strength and fracture toughness were obtained from the test. The results showed that, since Poisson's ratio was considered, the more accurate test values could be obtained using modified ECM equation than original ECM. PMA mixture showed higher stiffness and fracture toughness than normal asphalt mixture under very low temperatures.

  • PDF

Estimation Method of Creep Coefficient in Concrete Structures (콘크리트 구조물에서 크리프 계수 추정 방법)

  • Park, Jong-Bum;Park, Jung-Il;Chang, Sung-Pil;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • To predict the time-dependent behavior of concrete structures, the models which describe the time-dependent characteristics of concrete, i.e. creep and shrinkage are required. However, there must be significant differences between the displacements that are obtained using the given creep and shrinkage models and the measured displacements, because of the uncertainties of creep and shrinkage model itself and those of environmental condition. There are some efforts to reduce these error or uncertainties by using the model which are obtained from creep test for the concrete in construction site. Nevertheless, the predicted values from this model may be still different from the actual values due to the same reason. This study aimed to propose a method of estimating the creep coefficient from the measured displacements of concrete structure, where creep model uncertainty factor was considered as an error factor of creep model. Numerical validation for double composite steel box and concrete beam showed desirable feasibility of the presented method. Consideration of the time-dependent characteristics of creep as one of the error factors make it possible to predict long-term behaviors of concrete structures more realistically, especially long-span PSC girder bridges and concrete cable-stayed bridges of which major problem is the geometry control under construction and maintenance.

Time Evolution of Material Parameters in Durability Design of Marin Concrete (해양콘크리트의 내구성 설계를 위한 재료 매개변수의 시간단계별 해석)

  • Yoon, In-Seok;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1077-1080
    • /
    • 2008
  • Material parameters such as surface chloride content, water permeability coefficient, chloride diffusivity and critical chloride content are a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Over the past few decades, a considerable number of studies on the durability design for marine concrete structures have been carried out. However, the results are different to each other. In order to establish a consistent durability design system of concrete, it is a precondition to define material parameters, which affect deterioration of concrete due to chloride penetration. Such parameters are surface chloride content, chloride diffusivity, and critical chloride content. Usually these parameters are assumed as temporary constant values or obtained from the experimental results for short term. However, it is necessary to define these parameters reasonably, because these significantly influence the calculation of service life of concrete. In this paper, it is introduced to define material parameters of concrete for chloride diffusion, such as surface chloride content $[Cl]_s$, water permeability coefficient K, chloride diffusivity $D_{Cl}$, critical chloride content $[Cl]_{cr}$. These are expressed as time function considering hydration evolution of hardened cement paste. The definition of the material parameters is a prerequisite to simulate chloride penetration into concrete as time elapsed.

  • PDF

Stress-Strain Relations of Concrete According to the Confining Conditions (구속 조건에 따른 콘크리트 응력-변형률 관계)

  • Im, Seok Been;Han, Taek Hee;Han, Sang Yun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.743-752
    • /
    • 2006
  • Confined concrete has enhanced strength and ductility compared with unconfined strength. Cause of these merits of confined concrete, many researches have been performed for confining effects of concrete and been studied in many fields. Although many researches about concrete confined by FRP sheets have been studied recently, it is difficult to apply concrete confined by FRP in real structures because FRP is a brittle material. In this study, the enhanced strength and ductility of concrete which is confined by steel tubes or steel plates were investigated. Fifty one specimens were tested and each specimen has different confining condition. Test results showed enhanced ductility and strength of confined concrete and concrete models were suggested under various confining conditions by regression of experimental data.

Vibration Analysis for the Living Room Slab of Apartment (아파트 거실 바닥판에 대한 진동해석)

  • Kim, Yong-Tae;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.93-101
    • /
    • 2006
  • Recently the floor vibration of apartment is often beginning to make its appearance of the environmental dispute, the standard floor system of housing are suggested for the settlement of this issue by government. For the slab vibration analysis on the laminated floor system of apartment, it is required the effectively analytical method of the floor system considering laminated theory. In this paper, more effective modeling methods of laminated floor slab are proposed for the method of accurate rigidity evaluation. By using the advanced modeling method, the more accurate vibration response can be obtained and can accurately evaluate the rigidity of living room floor system of apartment with different laminated materials.

  • PDF

Determination of Convection Heat Transfer Coefficient Considering Curing Condition, Ambient Temperature and Boiling Effect (양생조건·외기온도·비등효과를 고려한 콘크리트 외기대류계수의 결정)

  • Choi Myoung-Sung;Kim Yun-Yong;Woo Sang-Kyun;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.551-558
    • /
    • 2005
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the convection heat transfer coefficient which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, curing condition and ambient temperature. At initial stage, the convection heat transfer coefficient is overestimated by the evaporation quantity. So it is essential to modify the thermal equilibrium considered with the boiling effect. From experimental results, the convection heat transfer coefficient was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent convection heat transfer coefficient including effects of velocity of wind, curing condition, ambient temperature and boiling effects was theoretically proposed. The convection heat transfer coefficient in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with curing condition. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the convection heat transfer coefficient by this model was well agreed with those by experimental results.