• Title/Summary/Keyword: 콘크리트 재료모델

Search Result 399, Processing Time 0.02 seconds

Characteristics of Shrinkage on Concrete using Electric Arc Furnace Slag as Coarse Aggregate (전기로 산화 슬래그를 굵은 골재로 사용한 콘크리트의 수축 특성)

  • Choi, Hyo-Eun;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.125-132
    • /
    • 2020
  • The causes of concrete shrinkage are very diverse, in particular, aggregates impact the characteristics of shrinkage in concrete by constraining the shrinkage of cement paste. Meanwhile, owing to the lack of natural aggregate, various alternative aggregates are being developed, and their application in concrete also becomes more diverse. This study aimed to experimentally evaluate the drying and autogenous shrinkage in concrete that was composed of electric arc furnace slag as coarse aggregates. And, the results were compared with prediction models. From the results, the application of electric arc furnace slag can reduce the drying and autogenous shrinkage. In particular, autogenous shrinkage is greatly decreased. The predictions using GL2000 for drying shrinkage and Tazawa model for autogenous shrinkage were similar to the experimental results. However, the most prediction models do not consider the impact of aggregates, hence, the new prediction model should be developed or improved.

An Indeterminate Strut-Tie Model and Load Distribution Ratio for Reinforced Concrete Corbels (철근콘크리트 코벨의 부정정 스트럿-타이 모델 및 하중분배율)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1065-1079
    • /
    • 2014
  • The ultimate behavior of reinforced concrete corbel is complicated due to the primary design variables including the shear span-to-effective depth ratio a/d, flexural reinforcement ratio, load condition, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strength and complicated structural behavior is proposed for the design of the reinforced concrete corbels with shear span-to-effective depth ratio of $a/d{\leq}1$. A load distribution ratio, defined as the fraction of applied load transferred by horizontal truss mechanism, is also proposed to help structural designers perform the design of reinforced concrete corbels by using the strut-tie model approaches of current design codes. For the development of the load distribution ratio, numerous material nonlinear finite element analyses of the proposed indeterminate strut-tie model were conducted by changing primary design variables. The ultimate strengths of reinforced concrete corbels tested to failure were evaluated by incorporating the proposed strut-tie model and load distribution ratio into the ACI 318-11's strut-tie model method. The validity of the proposed model and load distribution ratio was examined by comparing the strength analysis results with those by the ACI 318-11's conventional design method and strut-tie model methods of current design codes.

Nonlinear Analysis of Steel-concrete Composite Girder Using Interface Element (경계면 요소를 사용한 강·콘크리트 혼합 거더의 비선형 거동 해석)

  • Kwon, Hee-Jung;Kim, Moon Kyum;Cho, Kyung Hwan;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.281-290
    • /
    • 2009
  • In this study, an analysis technique of hybrid girder considering nonlinearity of steel-concrete contact surface is presented. Steel-concrete hybrid girder shows partial-interaction behavior due to the deformation of shear connectors, slip and detachment at the interface, and cracks under the applied loads. Therefore, the partial-interaction approach becomes more reasonable. Contact surface is modeled by interface element and analyzed nonlinearly because of cost of time and effort to detailed model and analysis. Steel and Concrete are modeled considering non-linearity of materials. Material property of contact surface is obtained from push-out test and input to interface element. For the constitutive models, Drucker-Prager and smeared cracking model are used for concrete in compression and tension, respectively, and a von-Mises model is used for steel. This analysis technique is verified by comparing it with test results. Using verified analysis technique, various analyses are performed with different parameters such as nonlinear material property of interface element and prestress. The results are compared with linear analysis result and analysis result with the assumption of full-interaction.

Numerical Analysis of Fiber Reinforced Concrete Base Subjected to Environmental Loads (섬유보강 콘크리트 기층의 환경하중에 대한 거동 수치 해석)

  • Cho, Young-Kyo;Kim, Seong-Min;Park, Jong-Sub;Park, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.239-249
    • /
    • 2011
  • The behavior of the fiber reinforced concrete (FRC) base under environmental loads was analyzed numerically as a fundamental study to develop a high structural and functional performance composite pavement system in which the base was formed using FRC and the asphalt or cement concrete surface was placed on it. A two-dimensional finite element model of the FRC base was developed and the sensitivity study was performed with the variables including slab thickness of base, thermal expansion coefficient, elastic modulus, and tensile and compressive strengths. The crack spacing and crack width were selected as representatives of the base behavior. The effects of the selected variables on the crack spacing and crack width were analyzed and the sensitive variables were determined. The results of this study could be useful to determine the optimal material properties of the FRC base for combining well with the surface materials.

A Numerical Model of Reinforced Concrete Members Exposed to Fire and After-Cooling Analysis (화재 및 화재 후 냉각상태의 철근콘크리트 부재 수치해석)

  • Hwang, Ju-Young;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.101-113
    • /
    • 2015
  • This paper introduces a numerical analysis method for reinforced-concrete(RC) members exposed to fire and proposes considerations in designing RC structures on the basis of the comparison between numerical results and design codes. The proposed analysis method consists of two procedures of the transient heat transfer analysis and the non-linear structural analysis. To exactly evaluate the structural behavior under fire, two material models are considered in this paper. One is "Under-Fire" condition for the material properties at the high temperature and the other one is "After-Cooling" condition for the material properties after cooling down to air temperature. The proposed method is validated through the correlation study between experimental data and numerical results. In advance, the obtained results show that the material properties which are fittable to the corresponding temperature must be taken into account for an accurate prediction of the ultimate resisting capacity of RC members. Finally, comparison of the numerical results with the design code of EN1992-1-2 also shows that the design code needs to be revised to reserve the safety of the fire-damaged structural member.

A Study on the Stress-Strain Relationships for Nonlinear Analysis of Concrete Structures (콘크리트 구조물의 비선형해석을 위한 재료모델 비교연구)

  • 오병환;김영진;이형준;홍기중;박승진;임선택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.65-70
    • /
    • 1994
  • Reinforced concrete and prestressed concrete structures consist of different materials, namely concrete, reinforcing steel and/or prestressing steel. Reinforcing and prestressing steels can be considered homogeneous materials, and their properties are generally well defined. Howefer, concrete is a heterogeous materials, and it is difficult to define its properties accurately. Both concrete and steel exhibit various nonlinear materials properties. The stress-strain relationship of concrete is not only nonlinear, but it differs in compression and tension. And, tensile cracking is one of the most importnat factors which contribute to the nonlinear behavior of reinforced concrete structrures. In this strudy, the various stress-strain relationships of concrete and reinforcing steel in nonlinear analysis of RC and PC structures are examined.

  • PDF

Micromechanics-Based FE analysis of Lightweight Concrete Barrier (미세역학을 적용한 경량콘크리트 방호벽에 대한 유한요소 해석)

  • Kim, Bong-Rae;Yang, Beom-Joo;Jeon, Jeong-Hee;Lee, Haeng-Ki;Kwak, Jong-Won;Lee, Jung-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.546-549
    • /
    • 2010
  • 현대사회에서 점차 경량콘크리트의 활용도에 대한 관심이 높아지고 있으나 이에 관한 연구실적은 아직까지 미비하다. 경량콘크리트는 그 특성상 가벼운 자중과 높은 에너지 흡수성을 가지고 있다는 점에서 방호벽에 적용 가능한 재료로 볼 수 있다. 이에 본 연구에서는 이러한 점을 고려하여 경량 방호벽에 대한 컴퓨터 시뮬레이션을 통한 경량콘크리트 방호벽의 거동해석을 수행하였으며, 이를 위해 미세역학기반 경량콘크리트 모델을 상용 유한요소 프로그램인 ABAQUS에 적용하여 경량콘크리트 압축공시체에 관한 해석을 선 수행하였다. 이를 통해 도출된 손상변수를 통하여 실제 방호벽에 대한 정적 하중 시뮬레이션을 수행하였다.

  • PDF

Impact Tests and Numerical Simulations of Sandwich Concrete Panels for Modular Outer Shell of LNG Tank (모듈형 LNG 저장탱크 외조를 구성하는 샌드위치 콘크리트 패널의 충돌실험 및 해석)

  • Lee, Gye-Hee;Kim, Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.333-340
    • /
    • 2019
  • Tests using a middle velocity propulsion impact machine (MVPIM) were performed to verify the impact resistance capability of sandwich concrete panels (SCP) in a modular liquefied natural gas (LNG) outer tank, and numerical models were constructed and analyzed. $2{\times}2m$ specimens with plain sectional characteristics and specimens including a joint section were used. A 51 kg missile was accelerated above 45 m/s and impacted to have the design code kinetic energy. Impact tests were performed twice according to the design code and once for the doubled impact speed. The numerical models for simulating impact behaviors were created by LS-DYNA. The external steel plate and filled concrete of the panel were modeled as solid elements, the studs as beam elements, and the steel plates as elasto-plastic material with fractures; the CSCM material model was used for concrete. The front plate deformations demonstrated good agreement with those of other tests. However the rear plate deformations were less. In the doubled speed test for the plain section specimen, the missile punctured both plates; however, the front plate was only fractured in the numerical analysis. The impact energy of the missile was transferred to the filled concrete in the numerical analysis.

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

A Parametric Study on the Loading Rate Sensitivity of R/C Element Behavior (R/C 부재의 하중재하속도 변화에 따른 민감성 연구)

  • 심종성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.38-43
    • /
    • 1989
  • An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was uses to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections were also suggested.

  • PDF