• Title/Summary/Keyword: 콘크리트 열화

Search Result 428, Processing Time 0.023 seconds

Quantifying Chloride Ingress in Cracked Concrete Using Image Processing (이미지 분석을 이용한 균열 콘크리트 내 염화물 침투 정량화 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • Chloride, which is one of the main deterioration factors in reinforced concrete structures, can degrade the performance of the structure due to chloride-induced corrosion of steel. Chloride content at steel depth or the rate of chloride penetration is necessary to determine deterioration of reinforced concrete or to calculate initiation time of steel corrosion caused by chloride attack. Chlorides in concrete are generally identified with typical two methods including chloride profiling using potentiometric titration method and discoloration method using AgNO3 solution. The former is advantageous to estimate chloride penetration rate (diffusion coefficient in general) with measured chloride contents directly, but it is laborious. In the case of latter, while the result is obtained easily with the range of discoloration, the error may occur depending on workmanship when the depth of chloride ingress is measured. This study shows that chloride penetrated depth is evaluated with the results obtained from discoloration method through image analysis, thereby the error is minimized by workmanship. In addition, the effect of micro-crack in concrete is studied on chloride penetration. In conclusion, the depth of chloride penetration was quantified with image analysis and as it was confirmed that chlorides can rapidly penetrate through micro-cracks, caution is especially required for cracks in concrete structure.

Cause Analysis for Sleeper Damage of Sleeper Floating Track in Urban Transit (도시철도 침목플로팅궤도의 침목손상 원인 분석)

  • Choi, Jung-Youl;Shin, Hwang-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.667-674
    • /
    • 2022
  • In this study, the correlation between the damage type and operating conditions of the sleepers was analyzed based on the design data and visual inspection results for the concrete sleepers of the sleeper floating track (STEDEF) that have been in operation for more than 20 years. It appeared in the form of cracks, breakages, and breaks in the concrete at the center and tie bar contact and buried areas. As a result of the numerical analysis, it was analyzed that the change in the left and right spring stiffness of the sleeper resilience pad increases the maximum stress, tensile stress, compressive stress, and displacement of the concrete sleeper, and stress concentration in the concrete at the tie bar contact area. It was proved analytically that the sleeper resilience pad can affect the damage of the concrete sleeper. Therefore, damage of concrete sleepers in the sleeper floating track in urban transit could be caused by changes in spring stiffness of sleeper resilience pads. It was reviewed that preventive maintenance such as improvement and timely replacement of sleeper resilience pads was necessary.

Case study of Corrosion Monitoring Sensor for Marine HC Structure (해양콘크리트 구조물의 철근부식 모니터링을 위한 부식센서 고찰)

  • Jang, Bong-Seok;Cha, Hung-Youn;Ahn, Jeong-Hwan;Kim, Bo-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.263-264
    • /
    • 2009
  • This paper presents the example of corrosion monitoring sensor that is applied to massive RC structure exposed to marine environments. Corrosion monitoring sensor is used as an early warning system to predict the initial stage of corrosion in concrete structures. So, it can be a good method to verify the design life and prepare measures for concrete deterioration in advance.

  • PDF

Fatigue Tests on Transverse Joints of Precast Prestressed Concrete Bridge Deck (프리스트레스를 도입한 프리캐스트 콘크리트 교량 바닥판의 연결부에 관한 피로실험)

  • 정철헌;김영진;장성욱;김철영;심창수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.159-165
    • /
    • 1998
  • 중트럭 통행으로 인한 철근콘크리트 교량바닥판의 열화는 교량구조물을 유지보수하는데 있어 심각한 문제 중 하나이며, 프리캐스트 바닥판을 이용한 교량바닥판의 시공 및 교체 방법이 실용적이며 효과적인 방법으로 인식되고 있다. 본 연구에서는 횡방향 ddusruf부에 종방향 프리스트레싱을 도입한 프리캐스트 바닥판의 모델을 제작하여 바닥판간 횡방향 연결부의 강성 평가 및 연결부의 피로 거동을 파악하기 위해서 피로실험을 수행하여 피로하중하에서의 휨강성의 변화, 균열발생 및 파괴하중 등을 측정하였다. 실험결과를 통해서 피로하중하에서 프리스트레스 프리캐스트 부재의 프리스트레스 효과를 평가하였으며, 현장타설에 의해서 시공되는 일반 RC 부재에 비해서 우수한 구조적 거동을 보여주는 적정량의 종방향 프리스트레스 크기를 결정하였다.

Investigation and Evaluation on Performance of Durability for Freeway Concrete Viaducts in Seoul Metropolitan Area (서울시내 위치한 콘크리트 고가차도의 내구성능 조사 및 평가)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.143-152
    • /
    • 2002
  • The objectives of this paper were to obtain the fundamental data to analyze the causes of deterioration of 39 freeway concrete viaducts in Seoul metropolitan area. To investigate the degree of concrete deterioration, carbonation depth, soluble chloride concentration in hardened concrete and half-cell potentials of reinforcement were measured. The number of structures which carbonation depth penetrates to reinforcement was 25% of total. The model of carbonation .ate was induced to 3.92 $\sqrt{t}$, which was 5% faster than 3.727 $\sqrt{t}$ assumed 60% water-cement ratio, R=1 in that of kishitani. After measuring chloride concentration in concrete, it was concluded that about 24% of all readings on samples from concrete exceed the critical content to minimize the risk of chloride-induced corrosion. About 31% of the freeway viaducts structures had a value lower than -350mV(vs. CSE), so it could conclude that the excessive chloride concentration was the major cause of reinforcement corrosion. Among the structures which measured half-cell potentials less than -350mV, about 50% exceeds the maximum acceptable limit of chloride concentration.

A Study on the One Side Freezing /Thaw and Carbonation of Autoclaved Lightweight Concrete (경량기포콘크리트의 편면동결융해 및 탄산화에 관한 연구)

  • 노재성;황의환;홍성수;이범재
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.149-156
    • /
    • 1995
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.

Fundamental Study on Developing Embedded Mini-Sensor for Nondestructive Diagnosis Corrosion of Rebar (비파괴 철근 부식 진단을 위한 매립형 미니센서 개발에 관한 기초적 연구)

  • Joh, Sung-Hyung;Lim, Young-Chul;Ismail, Mohamed;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.179-187
    • /
    • 2010
  • Corrosion of rebar embedded reinforced concrete is the main cause of collapse and degradation of reinforced concrete structure. Degradation occurs in reinforced concrete structures from corrosion caused by the Chloride that the damage other than the severe degradation of the structure in terms of maintenance and construction when the huge expense required and deciding terms is hard. Therefore, early detection of rebar corrosion is important for efficient maintenance and repairing and planning. Meanwhile, how to evaluate the corrosion of the non-destructive measurements have been used a lot. In particular CM-II (corrosion meter) is used to measurement the natural potential, polarization resistance and the resistivity of the concrete, but has some disadvantages. Embedded mini-sensor has been developed in order to overcome these disadvantages. So Measurement corrosion for using the mini-sensor compares with the measured results CM-II (corrosion meter), the developed mini-sensor verify the validity.

A Study on the Estimation of Steel Corrosion in Concrete Exposed under the Environment of Seawater (해양환경하에 방치한 콘크리트중의 철근의 부식 추정에 대한 연구)

  • 문한영;김성수;류재석
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.129-137
    • /
    • 1994
  • This study was performed for the purpose of obtaining the fundamental data to establish the criterion of concrete deterioration and presuming steel corrosion of concrete structures under the environment of seawater. Steel embedded concrete specimens were exposed in seawater for 1year. The soluble chloride content in concrete, corrosion potential and steel corrosion were considered. The results show that soluble chloride content in concrete was decreased with lower water-cement ratio and with mineral admixtures. Half-cell potential is reduced with steel corrosion. Corrosion area ratio is correlative with half-cell potential.