• Title/Summary/Keyword: 콘크리트 압축강도실험

Search Result 1,408, Processing Time 0.027 seconds

The Properties of Compressive Strength of Non-standard Specimens Considered Strength Level (강도수준을 고려한 비표준형 공시체의 압축강도 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yun, Yong-Ho;Jang, Seck-Soo;Yeo, In-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.781-784
    • /
    • 2008
  • Recently as application of high-strength concrete on concrete structures has been on the rise, use of non-standard specimen is increasing. Therefore, this study investigated the effect of specimen's size effect, ratio of height/diameter and curing conditions on concrete compressive strength. Results of experiments showed that as size of specimen increased as much as 1 mm, standard design compressive strength of 24MPa fell as much as0.15MPa 40MPa fell as much as 0.1MPa 80MPa fell as much as 0.3MPa, and it indicates that as the level of strength is intensified, the decrement of compressive strength increases. As ratio of height/diameter increased as much as 1.0, compressive strength of 24MPa fell as much as 2.9MPa 40MPa fell as much as 3.7MPa 80MPa fell as much as 9.8MPa, and it means that as strength of concrete is higher, influence of ratio of height/diameter becomes bigger.

  • PDF

A Study on the Relationship between Compressive Strength and Water-Cement Ratio According to Water Reducing Ratio (감수율에 따른 압축강도와 물-시멘트비 관계에 관한 연구)

  • Kim, Kyung-Hwan;Oh, Sung-Rok;Choi, Wook;Choi, Yun-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.591-598
    • /
    • 2014
  • In this study, the relationship between compressive strength and water-cement ratio according to water reducing ratio was evaluated, concrete mix was prepared according to 3 level of water reducing ratio (0%, 8% and 16%) and 3 level of water-cement ratio (40%, 45% and 50%). In addition, concrete mix was carried out repetition test of three times in order to secure the reliability. As a result, compressive strength according to water reducing ratio was shown that difference of strength was about 20% occurred, effect of compressive strength according to water reducing ratio was found more than the water-cement ratio. Therefore, reflected the effect of water reducing ratio, relationship equation between new compressive strength and water-cement ratio was proposed.

An Experimental Study on Relation between compressive strength and Shear Wave velocity for characteristics of coarse aggregate size and type of cement (굵은 골재 최대치수 및 시멘트 종류에 따른 압축강도와 전단파 속도의 상관관계에 대한 실험적 연구)

  • An, Ji-Hwan;Jeon, Sung-IL;Nam, Jeong-Hee;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.169-175
    • /
    • 2011
  • Strength is one of the very important factors to evaluate the physical properties of concrete. Aggregate forms the most parts in concrete. Cement as a binder in concrete is also closely related to strength. This experiment was tested to understand the effect of the characteristics of aggregate and cement on the relationship between concrete compressive strength and Shear Wave velocity. It was experimented by the different types of cement and maximum coarse aggregate sizes. Type I cement and rapid setting cement was used. Aggregates from three different regions were used. Aggregate of 19mm and 13mm maximum coarse aggregate sizes was used for grading. The relationship between compressive strength and Shear Wave velocity was tested under the condition of same mixture. LA wear test was used to quantify the characteristics of aggregate. As a result, the relationship between concrete compressive strength and Shear Wave velocity was affected by the types of cement, but regular relationship was appeared regardless of types of aggregate, grading and abrasion ratio.

Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers (갈고리형 강섬유를 혼입한 보통 및 고강도 콘크리트의 휨강도 평가)

  • Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.531-539
    • /
    • 2008
  • The purpose of this study is to investigate the mechanical properties of high strength concretes reinforced with hooked steel fiber. For this purpose, total 36 specimens whose variables are concrete compressive strength, steel fiber aspect ratio, and steel fiber volume contents, are made and tested. From the test results including previous research work, flexural performance of steel fiber reinforced high strength concrete is evaluated in terms of flexural strength and toughness index. Flexural behavior of steel fiber reinforced high strength concrete is enhanced with respect to the fiber volume content, the aspect ratio, and concrete compressive strength. More efforts are devoted to evaluate quantitatively between the flexural strength and the structural parameters such as the fiber volume content, the aspect ratio, and concrete compressive strength.

An Effect on Early Temperature of Placing Concrete Affecting Compressive Strength of Concrete (콘크리트 타설 초기온도가 압축강도에 미치는 영향)

  • Park, Dae-Oh;Park, Young-Shin;Park, Jae-Myung;Gang, Yeon-Woo;Jun, Byung-Chea
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.641-644
    • /
    • 2008
  • The strength of concrete is developed by cement hydration reaction influenced by the circumferential temperatures. In this study, therefore, the experiments are conducted and evaluated about the characteristics as changes of early concrete placing temperature and curing temperature to understand the effects of the temperature which influences concrete properties. The results of the experiments changing the early concrete placing temperature in 5$^{\circ}C$ and 10$^{\circ}C$ are followed. In case of conducting standard concrete curing, early compressive strength development rate of the concrete which had low placing temperature was low, but it was shown that early compressive strength development rate was not affected by low placing temperature in age 28 days of concrete. In case of conducting outdoor curing in winter, early compressive strength development rate of the concrete which had high placing temperature was high in all test specimens. As a results, early compressive strength development of concrete was influenced by temperature of early concrete, but after aging 28 days of concrete, it was influenced by curing temperature rather than temperature of early concrete.

  • PDF

Compressive Strength Development Model for Concrete Cured by Microwave Heating Form (마이크로웨이브 발열거푸집으로 양생된 콘크리트의 압축강도발현 모델)

  • Koh, Tae-Hoon;Moon, Do-Young;Bae, Jung-Myung;Yoo, Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.669-676
    • /
    • 2015
  • Time dependent model for prediction of compressive strength development of concrete cured by microwave heating form was presented in this study. The presented model is similar to the equation which is given in ACI 209R-92 but the constants which is dependent on cement type and curing method in the presented model are modified by the regression analysis of the experimental data. Laboratory scale concrete specimens were cast and cured by the microwave heating form and drilled cores extracted from the specimens were fractured in compression. The measured core strengths are converted to standard core and in-situ strengths. These in-situ strengths are used for the regression.

The Moment-Curvature Relationship of the Rectangular Ultra High Performance Fiber Reinforced Concrete Beam (초고강도 섬유보강 직사각형 콘크리트보의 모멘트-곡률 관계)

  • Han, Sang-Mook;Guo, Qing-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The flexural behavior of the UHPFRC rectangular beam which has 100 MPa, 140 MPa compressive strength were compared with that of the typical RPC rectangular beam which has same geometrical shape, prestressd force and 160 MPa compressive strength. UHPFRC beam was not reinforced at all and the variable of test is fraction of steel fiber, compressive strength of concrete, method of prestressing and ratio of prestressing bar. The behavior of UHPFRC beam was analysed by relationship of moment - curvature and load - deflection. Simple modeling of stress-strain of UHPFRC was proposed. Based on the proposed constituted, the flexural moment-curvature relationship was calculated and compared with experimental data on prestressed UHPFRC beams. Good agreement between calculated strengths and experimental data is obtained.

Realistic Estimation Method of Compressive Strength in Concrete Structure (콘크리트 구조물의 합리적인 압축강도 추정기법 연구)

  • Oh, Byung-Hwan;Yang, In-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.241-249
    • /
    • 1999
  • To estimate the compressive strength of concrete more realistically, relative large number of data are necessary. However, it is very common in practice that only limited data are available. The purpose of the present paper is therefore to propose a realistic method to estimate the compressive strength of concrete with limited data in actual site. The Bayesian method of statistical analysis has been applied to the problem of the estimation of compressive strength of concrete. The mean compressive strength is considered as the random parameter and a prior distribution is selected to enable updating of the Bayesian distribution of compressive strength of concrete reflecting both existing data and sampling observations. The updating of the Bayesian distribution with increasing data is illustrated in numerical application. It is shown that by combining prior estimation with information from site observation, more precise estimation is possible with relatively small sampling. It is also seen that the contribution of the prior in determining the posterior distribution depends on its sharpness or flatness in relation to the sharpness or flatness of the likelihood function. The present paper allows more realistic determination of concrete strength in site with limited data.

A Study on the Bond Properties of High Strength Concrete (고강도콘크리트의 부착특성에 관한 연구)

  • 홍건호;신영수;정일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.156-162
    • /
    • 1996
  • The purpose of this study is to find experimentally bond properties of deformed bars in high strength concwtc. Bond properties of deformed bars in high strength concrete are tested i n tensile stress state. Eighty beam-end specimens are used for this experiment. Concrete compressive strength is used as main experimental variable, in addition a few variables affecting bond properties are used : bond length, cover thickness and bar diameter. The principal results obtained from this study are as follows ; - Bond strength is not proportionate to bond length in high strength concrete. The rate of bond strength increase followed by bond length rapidly diminish according to concrete strength increase. The reason is analyzed in FEM analysis that bond stress is not uniformly distributed in high strength concrete and concentrate on loading area. - Bond strength is linearly proportionate to cover thickness without regard to concrete strength. Especially the rate of strength increase is gradually increased by concrete strength.

An Experimental Study for Improving the Applicability of High-Strength Concrete (고강도 콘크리트의 실용성 향상을 위한 실험적 연구)

  • 유영찬;민병렬
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.83-92
    • /
    • 1992
  • 본 연구의 목적은 현장에서 구입 가능한 저품질의 재료를 사용한 일련의 실험을 통하여 28일 압축강도와 물\ulcorner시멘트비와 관계를 유출함으로써 고강도 콘크리트의 배합설계식을 얻기 위한 것이다. 목표슬럼프는 고층건물에서의 시공성을 고려하여 15$\pm$2cm로 하였으며 혼화제로는 고성능감수제를 사용하였다. 실험결과로부터 고강도콘크리트의 응력-변형도 특성을 비롯하여 탄성계수, 포아송비, 단위중량 등 고강도 콘크리트의 일반적인 재료성질을 얻었으며 본 연구에서 제안한 고강도콘크리트의 배합설계식은 국내현장조건을 고려한 실용식으로 고강도콘크리트으 설계 및 시공을 위한 기초자료로 사용 가능하다고 판단된다.