• Title/Summary/Keyword: 콘크리트 보수보강

Search Result 291, Processing Time 0.028 seconds

An Experimental Study on Mortar to Apply Building Structure (건축물 구조체에 적용가능한 모르타르에 관한 실험적 연구)

  • Kwon, Mi-Ok;Yoon, Ki-Hyun;Jung, Kang-Sik;Kim, Gang-Ki;Paik, Min-Su;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.413-416
    • /
    • 2008
  • The concrete used most in construction materials. There is an overcrowded iron dimensions use of the concrete at time of the other concrete theory on the reinforcing rod back which did congestion and compares it with this, and there are more few dimensions of the aggregate than concrete, and quantity of aggregate passage is superior in mortar than concrete. If a volume rate of the aggregate writes mortar than concrete against this, therefore, unit amount increases, and quantity of paste increases and quantity of dry shrinkage than increase concrete. However, I let I regulate lay priest distribution of the aggregate, and the results rates increase and reduce unit amount and decrease quantity of dry shrinkage, and separation resistance and the gap passage characteristics are judged because it can be it in a substitute document of very superior concrete. I came to carry out the study that I watched to let I was useful a little more and do the improvement repair of a become building wall body, a basement pillar and repair reinforcement of the assistant in the reinforcing rod back, the old age when I made congestion here. I regulated lay priest distribution of the aggregate in the study and regulated substitution rate of the aggregate (40%, 50%, 60%) and divided W/C 30%, 40% standards and produced mortar and I compared quantity of air by this, slump, compression robbery and showed it this time.

  • PDF

Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars (FRP 보강근을 주근으로 사용한 일방향 콘크리트 슬래브의 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.763-771
    • /
    • 2007
  • Over the last few decades, many researches have been conducted in order to find solution to the problem of corrosion in steel reinforced concrete. As a result, methods such as the use of stainless steel bars, epoxy coatings, and concrete additives, etc., have been tried. While effective in some situations, such remedies may still be unable to completely eliminate the problems of steel corrosion. Fiber reinforced polymer (FRP) elements are appealing as reinforcement due to some material properties such as high tensile strength, low density, and noncorrosive. However, due to the generally lower modulus of elasticity of FRP in comparison with the steel and the linear behavior of FRP, certain aspects of the structural behavior of RC members reinforced with FRP may be substantially different from similar elements reinforced with steel reinforcement. This paper presents the flexural behavior of one-way concrete slabs reinforced with FRP bars. They were simply supported and tested in the laboratory under static loading conditions to investigate their crack pattern and width, deflections, strains and mode of failure. The experimental results shows that behavior of the FRP reinforced slabs was bilinearly elastic until failure. Also, the results show that the FRP overreinforced concrete beams in this study can be safe for design in terms of deformability.

Shear Strength Prediction of FRP RC Baem without Shear Reinforcements (전단 보강이 없는 FRP RC보의 전단강도 예측)

  • Lee, Jae-Hoon;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.313-324
    • /
    • 2010
  • There are many problems in application of FRP reinforcing bars as shear reinforcement, since bending of FRP bars is not a feasible process on construction site. Even though FRP bars can be manufactured in bent shape, they have lower strength at bent location. However, there are no serious problems to use FRP bars as flexural reinforcement. Plates or slabs like bridge decks, in general, do not need shear reinforcements. These types of members with FRP flexural reinforcement have lower shear strength than those with conventional steel flexural reinforcement. However, reliable process or equation for shear strength estimation of FRP reinforced concrete without shear reinforcement are not established, yet. In this study, predicted shear strength obtained from available design equations and assessment equations are compared with 211 experimental results. The results showed that among the current design codes, the Architectural Institute of Japan (AIJ) and the Institution of Structural Engineers (ISE) provided the best estimation. ACI 440.1R-06 provided conservative results with degree of dispersion similar to that of ISE. In addition, regression analysis on the collected experimental results was conducted to develop regression models. As a result, a new reliable shear strength equation was proposed.

A Study on the Evaluation for Durability Performance of the Repair Method Using Fiber Reinforced Mortar (섬유 보강 모르타르를 사용한 보수공법의 내구성능 평가에 관한 연구)

  • Ryu, Gum-Sung;Koh, Kyung-Taeg;Kim, Bang-Wook;Yoon, Pil-Yong;Kim, Jin-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.309-312
    • /
    • 2006
  • In this study, the repair method using PVA fiber reinforced mortar evaluated on durability performance. Test items are compressive strength, flexural strength, carbonation, freezing-thawing. As for the test results, it was found that durability performance of the repair method using PVA fiber mortar showed more better than the existing repair method. Therefore, appling on the repair method using PVA fiber mortar, the repaired concrete structures can be increased to service life.

  • PDF

A Study on the Physical Characteristics of Repair Mortar Using Sepiolite (Sepiolite를 보강섬유로 사용한 단면보수 모르타르의 물리적 특성변화에 관한 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob;Lee, Sea-Hyun;Park, Seung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.337-340
    • /
    • 2006
  • Utilize several kinds of reinforcement fibers to control workability and surface crack in occasion of mortar used in dilapidated concrete section repair public law. Polypropylene or poly vinyl alcohol that is hydrophilic fiber etc. is used much usually with this reinforcement fiber. Reinforcement fiber does important action that control crack that enhances coherence between material and happens at dry contraction. In this study, wished to use Sepiorite that inorganic materials and affinity such as cement are excellent nature inorganic world fiber and improve repair mortar performance. In this study, as reinforcement fiber, wished to grasp physical characteristics that uses Sepioraiteu and happens this time and grasp application possibility of concrete's repair mortar.

  • PDF

Studies on Bond Properties of Repair Materials (보수.보강재료의 부착 특성에 관한연구)

  • 김진선;김경원;한만엽;정영수;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.293-298
    • /
    • 1995
  • This study experimentally evaluate the bonding performance of repair and strengthening materials. It is very important problem to justify bonding properties between repair and strengthening materials and old concrete. Many previous research and investigation showed that bonding strength of reinforcing materials determines the strengthening effect and the durability of repair work. Therefore, menifestation of bonding properties and the improvement of bonding performance of repair and strengthening materials are very important. In order to improve the perforamnce of repair work, it needs to investigate the behavior of bonding materials, such as stress distribution along the bonding area and the long term performance of the material. The target repair methods are steel plate addition technique and repair mortar method, and the test parameters studied in this paper include epoxy thickness, bonding surface texture, and bonding area.

  • PDF

Development of Numerical Tool considering Interfacial Fracture Behavior in Repaired RC Structure (보수.보강된 RC 구조물의 경계면 파괴를 고려한 수치해석 기법 개발)

  • 임윤묵;김문겸;신승교;고태호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.553-558
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the interfacial fracture behavior in repaired structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are considered as quais-brittle materials, and steel plate as a repair material and reinforcement are modeled as elasto-plastic materials. The behavior of repaired reinforced concrete structures under flexural loading conditions is numerically simulated, and compaired with experimental results. The strengthening effect according to the length and thickness of the repair material is studied and rip-off, debonding and rupture failure mechanism of interface between substrate and repair materials are detected. It is shown that the interface properties affect on the mechanical behavior of repaired structures. Therefore, the developed numerical method using axial deformation link elements can be used for determining the strengthening effects and failure mechanism of repaired structures.

  • PDF

Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation (보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능)

  • Balaguru, P.N.;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

Flexural Behavior of Slab Repaired and Rehabilitated with Strand and Polymer Mortar (강연선과 폴리머 모르터에 의해 보수ㆍ보강된 슬래브의 휨거동 특성)

  • 황정호;양동석;박선규;엄준식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1007-1012
    • /
    • 2003
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. This study focused on the flexural behavior of reinforced concrete slabs strengthened by PS strand and polymer mortar in the tension zone. The properties of slabs are 70×12㎝ rectangular and over a 220㎝ span. Test parameters in this experimental study were placing thickness, chipping, the number of strand, the kind of mortar. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated slabs.

  • PDF

A Study on the Repair and Strengthening Effencs of R/C Beams with Enlarged Section (단면증설된 R/C보의 보수.보강 효과 연구)

  • 오홍섭;심종성;이차돈;최완철;홍기섭;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.416-424
    • /
    • 1996
  • Reinforced Concrete structures need repair and rehabilitation due to the deterioration such as crack, spalling and disintegration. Numerous repair materials which are currently used in cinstruction fields witdout any specifications are examined in terms of their serviceabilities and effectiveness. In this paper sections of R/C beams are enlarged with repari material(epoxy, latex, premix), and then they are strengthened with rebar, steel plate of CFRP sheet on the tension side. Structural behaivior of strengthened beams are investigated under stactic tests and compared with each parameters.

  • PDF