• Title/Summary/Keyword: 콘크리트 그라운드

Search Result 5, Processing Time 0.018 seconds

Structural Layout Design for Concrete Structures Based on the Repeated Control Method by Using Micro Lattice Truss Model (마이크로 격자트러스모델을 이용한 반복강성제어법에 의한 콘크리트 구조형태의 최적화)

  • Choi, Ik-Chang;Ario, Ichiro
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.705-712
    • /
    • 2008
  • This study carried out simulation for structural layout design for concrete structures by using the models of the ground structure method. The micro lattice truss is modeled as assemblage of a number of unit cells. The progress of analysis repeat to undergo finite element analysis to feed-back results of stress to the stiffness of each member. Through the repeated this analysis, truss model is represented to form the topological materials and the structural shape with the use of the local stress condition without mathematical optimum tools. It is successful to analyse the shape-layout problem as numerical samples on the lattice truss model.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

Evaluation of the Heat Conduction Model of Concrete Ground on Which LN2 Non-Spreading Pool Forms (비확산 액체질소 풀이 형성된 콘크리트 판의 열전도 모델 평가)

  • KIM, MYUNGBAE;NGUYEN, LE-DUY;CHUNG, KYUNGYUL;HAN, YONGSHIK;CHO, SUNGHOON
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.365-373
    • /
    • 2021
  • In this study, evaporation of LN2 non-spreading pool on concrete plate was dealt with experimentally. The thermophysical properties of concrete, which is a composite material, were obtained by minimizing the difference between the numerical analysis results obtained from the assumed properties and the results from experiments. The thermal energy required for evaporation of the liquid pool is supplied from the concrete plate and the wall of the container. As a result of the measurement, the thermal energy flowing in from the wall was negligible compared to the one supplied from the concrete plate. It was found that the measured evaporation rate of the liquid pool by the heat energy supplied through the concrete plate agrees well with the PTC model except for the initial section of the experiment. The validity of the semi-infinite assumption and the one-dimensional assumption, which are the main conditions of the PTC model, was also verified through experiments. The evaporation rate model in the non-spreading pool discussed in this study can provide a basic frame for the one in the spreading pool, which is a meaningful result considering that the spreading pool is very realistic compared to the non-spreading pool.

The Evaluation on Applicability of Leakage-prevented Sealing Packer Out of Grouted Rockbolt Hole (록볼트 그라우팅 시 역류방지용 밀봉 패커의 적용성 평가)

  • Yang, Taeseon;Kim, Jichang;Jeong, Jongki;Yoo, Dongho;Choi, HakYun;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.15-21
    • /
    • 2016
  • Nowadays, some studies have been performed for rockbolt method widely used in Korea. To make large slopes, tunnels or rock structures stable, supporting systems, such as anchor bolt, rock bolt which are developed recently, are commonly used. In this study, laboratory pullout tests were carried out to compare the characteristics of rock bolt that is most widely used with ones of rock bolt by newly developed circular model testers. Re-pullout test for the rock bolt in which loading and unloading cycles are repeated several times showed that the maximum pullout load is almost constant irrespective of the number of loading cycles, which may be due to no failure between rock bolt and filler that is filled with soils and concrete as a substitute. A development of rock bolt fillers as supporters using to protect people in tunnels and slopes is reviewed as a probable man-made hazard after excavation works. The functions of the grouted rock bolts associated with reinforcement effects also should be assessed in this study, which develop the sealing apparatus preventing from overflowing mortar out of a rock bolt hole for securing safety in the tunnel and slopes in order to secure stability named the sealing packer.

The Evaluation Applying Limit State Method for the Concrete Retaining Wall Structures (콘크리트 옹벽구조물의 한계상태설계법 적용성 평가)

  • Yang, Taeseon;Jeong, Jongki;Seo, Junhee;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.59-66
    • /
    • 2014
  • Nowadays, some studies are performed in order to introduce the Limit State Design method widely used in foreign work sites. LRFD (Load Resistance Factor Design) method is widely used in the fields in which the data accumulation is possible - such as deep foundations, and shallow foundations, etc. The limit state design in the retaining walls is insufficient in the country owing to difficulties applying load tests. The limit state design method for retaining wall structures are studied based upon the National Retaining wall Design Standard legislated in 2008 by Ministry of Land, Transport, and Maritime Affairs. In this paper several retaining walls were calculated according to LRFD design criteria analysis using the general program with limit state design method and the factor of safety for sliding and overturning. Comparing with their results, the Taylor's series simple reliability analysis was performed. In the analysis results of retaining wall section, safety factors calculated by LRFD were found to be lowered than those calculated in current WSD, and it is possibly judged to be economic design by changing wall dimensions. In the future, pre-assessment of the geotechnical data for ensuring the reliability and the studies including reinforced retaining walls with ground anchor are needed.