• Title/Summary/Keyword: 콘크리트 구조물 보수

Search Result 366, Processing Time 0.028 seconds

Evaluation of Flexural Strength for UHPC Deck Joints with Lap-Spliced Reinforced Steel Bar (UHPC 바닥판 철근겹침이음 연결부의 휨강도 평가)

  • Hwang, Hoon Hee;Yeo, In Soo;Cho, Keun Hee;Park, Sung Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.92-99
    • /
    • 2011
  • Ultra High Performance Concrete(UHPC) is a superior structural material with high strength and durability. Construction of light and slim structures is realized to apply this expectable new materials in practice. This research is a part of the project to develop UHPC precast deck system for hybrid cable stayed bridge. The main object of this study is to investigate behavior of the lap-spliced reinforced connection in UHPC. The major parameter considered in experimental plan was lap-spliced length. The 4-points bending test for 12 specimens were conducted to verify the effect of considered parameters. Test results show that the minimum value of lap spliced length of 300mm which specified in current korea high bridge design code was very conservative for UHPC precast deck system.

Mechanical Behavior of Construction Joints in Reinforced Concrete Structures Filled Internally with Cement Pastes (내부그라우팅으로 미세균열이 보수된 철근콘크리트 시공이음부의 역학적 특성에 관한 연구)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Lee, Keun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.217-225
    • /
    • 2003
  • Grouting internally with grout materials can repair the micro-cracks and micro-voids of construction joints more efficiently than injecting grouts from the surface of cracks. A new internal grouting method using perforated bundled-cables was developed in this study to enhance the structural integrity of the construction joints. The extensive experiments were performed to examine the mechanical behavior of construction joints which are repaired internally by the developed method. The tests were conducted for rectangular-shaped box wall structures and straight wall structures. The strength and permeability tests at grouted construction joints were conducted to evaluate the structural behavior of repaired construction joints. The present study indicates that the internal grouting method developed in this study enhances greatly the performance of construction joints and may be efficiently used for the leak-tight integrity of construction joints in concrete structures.

An Evaluation on the Flexural Strength of Concrete Beams Repaired by Polymer Resin (폴리머계로 보수한 철근콘크리트 보의 휨성능 평가)

  • Kim, Byung-Guk;Shin, Young-Soo;Hong, Gi-Suop;Hong, Yung-Kyun;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.107-112
    • /
    • 1997
  • A series of reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. The key parameters for this study were the size and location of the patch, and the repair materials, including polymer, polymer-cementitious and cementitious materials. The repaired specimens failed by a typical flexural mode with minor interfacial bond failure. Beams repaired with polymer, polymer-cementitious and cementitious materials recover 100%, 91%, and 97% of the flexural strength respectively, while beams with cement mortar lose approximately 30% of the strength. Compared with the pressure injection techniques the specimens repaired with patching techniques show low flexural strength, with significant interfacial bond failure. Location and size of the repaired part do not affect the recovering performance. Interfacial behavior between repair and strengthening materials is the major influencing factor for the composite structures.

  • PDF

A Study on the Development of Self-Repairing Smart Concrete Using Microorganism (미생물(微生物)을 이용한 자기수부성(自己修復性) 스마트 콘크리트 개발에 관한 기초연구)

  • Kim, Wha-Jung;Chun, Woo-Young;Ko, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.441-444
    • /
    • 2008
  • This study was conducted to develop self-repairing ability for concrete so that inspection could be available even in the event of minute cracks, for more economic concrete structure maintenance and longevity. This is a basic attempt to develop self-repairing concrete using the biochemical reaction of bacteria through an innovative method. In this study, the characteristics and problems posed by self-repairing concrete as proposed in international scientific journals were examined, and the potential of new concrete reformation and performance improvement using bio-mineralization was explored. Bio-mineralization, which is an action of creating bio-minerals using an organism, was proposed. A new concept of bacteria such as bacillus pasteurii using bio-mineralization that precipitates calcium carbonate, as well as the possibility of mechanical performance and durability of concrete and repair of cracks, was introduced. Directions for further study through basic experiments and developmental feasibility of self-repairing concrete were also presented.

  • PDF

Deformation Behavior Investigation of Materials by Debonding Failure in Adhesion and Repairing-strengthening Methods of RC Construction (RC구조물 접착 보수·보강 공법의 박리와 연관한 재료의 변형 거동 분석)

  • Han, Cheon-Goo;Byun, Hang-Yong;Park, Yong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.89-98
    • /
    • 2007
  • This study investigates the deformation behavior, related to debonding failure, of adhesion and repairing-strengthening materials of RC construction. A strain-stress curve shows that when the stress of specimens reached the highest and then fails, the strain value of cement mortar is $2.0{\times}10^{-3}$, while concrete was indicated at around $1.3{\times}10^{-3}$, epoxy resins are $0.8{\times}10^{-3}$, polymer mortar is $2.5{\times}10^{-3}$, steel plate is $2.5{\times}10^{-3}$, and carbon bar was $9.1{\times}10^{-3}$, respectively. For a thermal expansion coefficient with temperature variation, those basis materials, cement mortar and concrete, exhibited around $10{\mu}{\varepsilon}/{^{\circ}C}$, but adhesive materials, such as epoxy resins and polymer mortar, were $41{\sim}54{\mu}{\varepsilon}/{^{\circ}C}$ and $-0.5{\sim}0.7{\mu}{\varepsilon}/{^{\circ}C}$, respectively. In the case of steel plate is similar to basic materials but carbon fiber is indicates at $-1.7{\mu}{\varepsilon}/{^{\circ}C}$, which is the lowest value. Especially, between basic and adhesive materials, the thermal expansion coefficient was highly different. Although the coefficient depends on the type of epoxy resins, it is clear that the epoxy resins are susceptible to be debonded in nature, when the difference of environmental temperature varies more than $20{\sim}35{^{\circ}C}$.

Reinforcement Effect of Reinforced Concrete Beams Strengthened with Grid-type Carbon Fiber Plastics (격자형 탄소섬유로 보강한 R/C보의 보강효과)

  • Jo, Byung-Wan;Tae, Ghi-Ho;Kwon, Oh-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.377-385
    • /
    • 2003
  • Flexural characteristics of the R.C beams strengthened with newly-developed grid-type carbon fiber plastics(CFRP-GRIDS) were investigated. The tests were conducted under the four-points load to the failure to investigate the strengthening effects of CFRP-GRIDS on the beams. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly, the appropriate area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

Durability Evaluation and Defect Pattern Analysis in Railway Bridge Through Field Investigation (현장조사를 통한 철도 고가교 구조물의 내구성 평가 및 결함 패턴 분석)

  • Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Because of the defect in design, damage in using period, and deterioration in long term exposure to severe environmental condition, degradation of performance in RC (Reinforced Concrete) structures has occurred. This paper contains durability performance evaluation in railway bridges which covers eight districts through field investigation. For the target structures, durability performance is evaluated and the critical problems in use are derived. Additionally, service lifes for the deteriorated structures are evaluated through Durability-Environment index method based on the results from field investigation, and the results are compared with those from the condition assuming the structures without defect, damage, and deterioration. The target structures which consist of RC T girder, PSC girder, RC box, and Rahmen are investigated and the critical damage patterns are derived. They are evaluated to be cracks in PSC girder end, flexural cracks in PSC girder, crack around EPT anchor, and flexural cracks in RC T girder and RC box. The reasons for the critical patterns are also investigated. This study can be utilized for the repair planning considering the different district and the structure types.

An Experiment of Flexural Behavior for the Damaged Low Reinforced Concrete Beams Rehabilitated with External Tendons (손상된 저보강 RC보의 외부 긴장 보강 후 휨거동 실험)

  • Yoo, Sung Won;Suh, Jeong In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.40-47
    • /
    • 2013
  • Most experiments carried out in the previous studies dealt with the highly reinforced concrete beams (RC beams) in case of rehabilitating with external tendon. However, the reinforcing effect of external tendons cannot be clearly analyzed in this kind of RC beams because the rehabilitating tendon quantity for it is too small. By this reason, this study chose the low RC beams rehabilitated with external tendons. Therefore, in this study, 7 test beams were manufactured and flexural behavior tests were performed to assess the reinforcing effect and to find more proper rehabilitating method by external tendon. The reinforcing effect increased according to the quantity of tendons, and was especially added by repairing cracks with epoxy resin. It was shown that the design equations of AASHTO 1994 and ACI-318 did not show a good agreement with test results. The result of this study will be able to be used effectively in finding the more proper rehabilitating method of the damaged RC beams.

Investigation on the Flexural and Shear Behavior of Fiber Reinforced UHSC Members Reinforced with Stirrups (전단철근과 강섬유로 보강된 초고강도 콘크리트 부재의 휨 및 전단 거동에 관한 연구)

  • Yuh, Ok-Kyung;Ji, Kyu-Hyun;Bae, Baek-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.152-163
    • /
    • 2019
  • In this paper, effect of steel fiber inclusion, compressive strength of matrix, shear reinforcement and shear span to depth ratio on the flexural behavior of UHPFRC(Ultra High Performance Fiber Reinforced Concrete) were investigated with test of 10-UHPFRC beam specimens. All test specimens were subjected to the flexural static loading. It was shown that steel fiber significantly improve the shear strength of UHPFRC beams. 2% volume fraction of steel fiber change the mode of failure from shear failure to flexural failure and delayed the failure of compressive strut with comparatively short shear span to depth ratio. UHPFRC beams without steel fiber had a 45-degree crack angle and fiber reinforced one had lower crack angle. Shear reinforcement contribution on shear strength of beams can be calculated by 45-degree truss model with acceptable conservatism. Using test results, French and Korean UHPFRC design recommendations were evaluated. French recommendation have shown conservative results on flexural behavior but Korean recommendation have shown overestimation for flexural strength. Both recommendations have shown the conservatism on the flexural ductility and shear strength either.

Flexural Behavior of High-Strength Reinforced Concrete Beam with Recycled Aggregate Strengthened by FRP Plate (FRP로 보강된 순환골재 고강도 철근콘크리트 보의 휨거동)

  • Hong, Seong-Uk;Lee, Seung-Ho;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.126-132
    • /
    • 2018
  • As means to increase the use of concrete with recycled coarse aggregate (RCA), this study aims to evaluate the applicability for flexural strengthening of reinforced concrete beam with high-strength concretes and RCA on which FRP plates, used for repair and strengthening of old and low-durability reinforced concrete structures, is applied. In order to increase the adhesive force of epoxy and FRP plate, FRP plate was installed according to Near-Surface-Mounted (NSM) method. 12 specimens were manufactured using substitution rate of RCA (30%), concrete strengths (40MPa, 60MPa), diameters of deformed bar (D10, D13), and types of FRP plate (AFRP, CFRP) as variables to analyse flexural performance according to FRP plate and substitution rate of recycled aggregate. As a result, in all specimens, specimens strengthened by FRP plate showed a maximum of 17% increase in performance compared to specimens without FRP plate and strengthening performance of CFRP was found to be higher than AFRP. When modulus of rupture was used, the value of cracking moment was similar to that of the reference equation. As bending moment of some specimens strengthened by FRP plate failed to satisfy the criteria of KCI 2012 and ACI 440-2R, additional experiment is deemed as necessary.