• Title/Summary/Keyword: 콘크리트 경계면

Search Result 109, Processing Time 0.026 seconds

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Evaluation of the Bending Behavior of RC beam by Using Color-based Image Processing Method (색상에 기반한 영상분석기법을 이용한 콘크리트 거더의 휨 거동 분석)

  • Woo, Tae-Ryeon;Jung, Chi-Young;Kim, In-Tae;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2020
  • Cracks in reinforced concrete structures are the most common type of damage and are used as important analytical data to understand the fracture behavior characteristics of structures. Currently, there is a problem that most of the crack investigation relies on visual inspection, therefore many researchers have proposed image analysis techniques to improve the problem. In this study, we proposed a crack evaluation method to be applied at an indoor experimental level using image analysis method. The image analysis technique using color is for distinguishing a boundary surface between objects existing in an image, and is a method for separating similar colors into one region based on a predefined color. In this study, to improve the accuracy of image analysis, blue paint was applied to the concrete surface and bending experiments were performed. The image analysis method was able to measure the crack width with superior accuracy compared to the crack diameter, and at the same time, it was also possible to analyze the deflection of the beam. Both the crack and deformation were able to confirm the accuracy similar to the existing measurement method, and it was found that the image analysis method was very excellent in terms of applicability.

Nonlinear Flexural Analysis of RC Beam Rehabilitated by Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트로 보강된 RC보의 비선형 휨해석)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Yong-Bin;Kang, Mun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4635-4642
    • /
    • 2010
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. One of the most advantages of the very early-strength latex-modified concrete (VES-LMC) could be the similar contraction and expansion behaviour to normal concrete substrate, which enable to ensure long-term performance. The purpose of this study was to parametric nonlinear flexural nonlinear analysis of RC beam rehabilitated by VES-LMC. The results were as follows; The flexural nonlinear analysis model of RC beam overlaid by VES-LMC in ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The proposed FE analysis model was verified by comparison of an experimental data and the FE analysis results. The FE analysis results showed that yield point as well as flexural stiffness increased as the depth increased; the stiffness of beam overall increased as the bond stiffness became larger; the bond strength between two different materials is a key factor in composite beam. A parametric study showed that an overlay thickness was a main influencing factor to the behavior of RC beam overlaid by VES-LMC.

An experimental study on the improvement of tunnel drainage system using a geogrid composite (지오그리드 복합 배수재를 이용한 터널 배수성능 개선에 관한 실험적 연구)

  • Lee, Jun S.;Choi, Il-yoon;Lim, Jihoon;Yoon, Suk Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.31-40
    • /
    • 2016
  • A new testing equipment is designed to investigate the characteristics of the drainage fabric which is used in the tunnel drain system. The equipment is possible to model the loading as well as boundary conditions of the shotcrete precisely and it follows the general guideline of ASTM D4716 so that the interface between shotcrete and concrete lining retains the real situation in the tunnel site. Using the real loading conditions and surface irregularities, the flow rate and its capacity of the regular fabric has been estimated. A composite drainage fabric having geogrid inside was also used to investigate the flow rate and its efficiency. The advantages of the composite fabric compared with the regular one have been demonstrated using the experimental data and brief outline of the future work is finally proposed.

Stability Analysis of Concrete Liner installed in a Compressed Air Storage Tunnel (압축공기 저장용 터널에 설치된 콘크리트 라이닝의 안정성 해석)

  • Lee, Youn-Kyou;Park, Kyung-Soon;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.498-506
    • /
    • 2009
  • The stability assessment of a concrete liner of a compressed air storage tunnel should be performed by an approach which is different from that commonly used for the liners of road tunnels, since the liner is exposed to high air pressure. In this study, the stability analysis method for the liner of compressed air storage tunnel is proposed based on the elastic and elasto-plastic solutions of the thick-walled cylinder problem. In case of elastic analysis, the yield initiation condition at the inner boundary is considered as the failure condition of the liner, while the condition which results in the extension of yielding zone to a certain depth is taken as a failure indicator of the liner in the elasto-plastic analysis taking Mohr-Coulomb criterion. The application of the proposed method revealed that the influence of the relative magnitude of boundary loads on the stability of liner is considerable. In particular, noting that the estimation of the outer boundary load may be relatively difficult, it is thought that the precise prediction of outer boundary load is very important in the analysis. Accordingly, the emphasis is put on the selection of the liner installation time, which may govern the magnitude of outer boundary load.

Study on the Applicability of High Frequency Seismic Reflection Method to the Inspection of Tunnel Lining Structures - Physical Modeling Approach - (터널 지보구조 진단을 위한 고주파수 탄성파 반사법의 응용성 연구 - 모형 실험을 중심으로 -)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Shin, Yong-Suk;Hyun, Hye-Ja;Jung, Hyun-Key
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • In recent years two reflection methods, i.e. GPR and seismic Impact-Echo, are usually performed to obtain the information about tunnel lining structures composed of concrete lining, shotcrete, water barrier, and voids at the back of lining. However, they do not lead to a desirable resolution sufficient for the inspection of tunnel safety, due to many problems of interest including primarily (1) inner thin layers of lining structure itself in comparison with the wavelength of source wavelets, (2) dominant unwanted surface wave arrivals, (3) inadequate measuring strategy. In this sense, seismic physical modeling is a useful tool, with the use of the full information about the known physical model, to handle such problems, especially to study problems of wave propagation in such fine structures that are not amenable to theory and field works as well. Thus, this paper deals with various results of seismic physical modeling to enable to show a possibility of detecting the inner layer boundaries of tunnel lining structures. To this end, a physical model analogous to a lining structure was built up, measured and processed in the same way as performed in regular reflection surveys. The evaluated seismic section gives a clear picture of the lining structure, that will open up more consistent direction of research into the development of an efficient measuring and processing technology.

  • PDF

Evaluation of the Pull-out Resistance of the SMA Wire Connector (SMA 와이어를 이용한 연결재의 인발저항성능 평가)

  • Jung, Chi-Young;Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.130-137
    • /
    • 2019
  • Precast concrete (PC) structure is one of the type of the structures which is made in a facility prior to installing it to a construction field. The contact surfaces between two PC structures should be treated for obtaining enough binding force by inducing prestressing force. However, in the many cases, the contact surface causes the crack and leakage of water. These cracks and water leakage can cause the corrosion of the rebar, and the corrosion of the rebar can severely reduce the long-term durability. In this study, the SMA wire connector is suggested to solve the problem with the contact surfaces between two PC structures. The pull-out resistance of the suggested SMA wire connector is evaluated by conducting the tests to find the effect of the number of wires, shape of connector part, and shape memory effect. As a result of this study, the empirical formula is suggested to estimate the pull-out resistance related with the effects of the shape of the connector, shape memory effect, and the adhesive force. The validity between the estimated pull-out resistance and the measured value is confirmed.

Comparison of Geogrid Bonding Methods under Asphalt Overlay Layer for Reflection Cracking Retardation (아스팔트 덧씌우기 하부의 Geogrid 부착방법에 따른 반사균열 지연특성 비교)

  • Doh, Young-Soo;Kim, Bun-Chang;Ko, Tae-Young;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.9-20
    • /
    • 2005
  • This study was carried out to select most efficient bonding methods of geogrid at the interface of old concrete pavement before placing asphalt overlay layer for reflection cracking retardation. Three bonding methods, a RSC-4 emulsified asphalt, a compound and an unsaturated polyester resin (UPR) were compared in this study. Three types of asphalt mixture (AC 60-80, RLDPE 8%, PG 76-22) and a dense-graded aggregate were used for overlay asphalt pavement. A reinforcing material which consists of a woven fabric underneath a glass fiber grid was used. An expedite test method which is for simulating mixed mode (mode I and II) fracture test was performed using a wheel tracker in laboratory. Cracking development by load repetition was measured as fatigue life (number of load cycle) and expansion of specimen body were measured for each test specimen. The results showed that UPR was the best and RSC-4 the next. But considering field applicability, RSC-4 was considered as an appropriate choice for bonding reinforcing material.

  • PDF

Development and Performance Evaluation of the Shear Connector of Composite Beam with Vertical Bars (직봉의 기능을 포함한 합성보의 전단연결재 개발과 성능평가)

  • Kim, Sang-Seup;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.725-736
    • /
    • 2011
  • In a composite beam, a shear connector is installed to resist the horizontal shear on an interface between steel beams and reinforced concrete slabs. The steel-wire-integrated deck plate slab is commonly used at the wide section beam. Then vertical bars are installed at the upper wire of the ends of the steel truss girder to ensure safety during the construction. The new type of shear connector is made of deformed bar and steel plates, and must function as vertical bars but must have higher shear capacity. This paper examines the ways to develop and utilize this new shear connector. From the push-out experiments, a shear connector made of a continuous deformed bar and steel plate showed a higher shear capacity and ductility than a ${\phi}16$ stud connector, and functioned as a vertical bar.

Flexural Behavior of Layered RC Slabs, which Bio-Mimics the Interface of Shell Layers, Produced by Using 3D Printable Highly Ductile Cement Composite (3D 프린팅용 고연성 시멘트 복합체를 활용한 패류 껍질층 경계면 모방형 적층 RC 슬래브의 휨 거동)

  • Chang-Jin Hyun;Ki-Seong Kwon;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2024
  • In this study, we employed Highly Ductile Cement Composite (HDCC) to evaluate the flexural performance of a RC slab that simulates the laminating structure of a seashell. To evaluate flexural performance, we produced conventional RC slab specimens, HDCC slab specimens, and HDCC-M slab specimens which biomimics a seashell's layered structure by inserting PE mesh inside the slab made of HDCC. A series of 4-point bending tests were conducted. Experimental results shows the flexural strength of the HDCC-M slab specimen was 1.7 times and 1.2 times higher than that of the RC and HDCC slab specimens, respectively. Furthermore, the ductility was evaluated using the ratio of yield deflection to maximum deflection, and it was confirmed that the HDCC slab test specimen exhibited the best ductility. This is most likely due to the fact that the inserted PE mesh separates the layers and increases ductility, while the HDCC passing through the mesh prevents the loss of load carrying capacity due to layer separation.