• Title/Summary/Keyword: 콘크리트 거더 교량

Search Result 212, Processing Time 0.015 seconds

A Simple Method of Obtaining Exact Values of the Natural Frequencies of Vibration for Some Composite Laminated Structures with Various Boundary Condition (다양한 경계조건을 갖는 복합적층판의 간편한 고유진동수 해석방법)

  • Won, Chi Moon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Numerical method for eigenvalue problems are also very much involved in seeking such a solution. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by Kim in 1974. Recently, this method was extended to two dimensional problems including composite laminates, and has been applied to composite plates with shear deformation effects. In this paper, application of this method to the specially orthotropic laminated plates with various boundary condition is accomplished and the result of analysis is presented.

Evaluation of the Structure Stability of a Plate Girder Bridge Using MIDAS Structure Analysis (MIDAS를 활용한 플레이트 거더교 구조 안정성 평가에 관한 연구)

  • Kim, Eui Soo;Kim, Jong Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.451-457
    • /
    • 2014
  • Recently, as a means of resolving the issue of legal liability in the event of an accident or a disaster, a wide variety of simulation techniques, such as structural and structure-fluid interaction analysis, have been used in the field of forensic engineering. The plate girder bridge discussed in this paper was being constructed between a pier and an abutment to expand an existing bridge, but an accident whereby the bridge overturned occurred at the end of the concrete laying process for a protective wall. This accident was caused by additional loads not being considered at the time of the design as well as the actual construction being different from the design. The additional loads ultimately generated a negative support force. In this study, we determined the cause of the accident by comparing the structural stability of the original design with that of the additional, non-conforming construction using MIDAS structural analysis.