• Title/Summary/Keyword: 콘크리트의 비틀림 저항

Search Result 4, Processing Time 0.02 seconds

Prediction of the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 이정윤;박지선
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1010-1021
    • /
    • 2002
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. Some test results indicated that the current ACI code was not successful in predicting the observed torsional moment of the RC beams with reasonable accuracy. The research reported in this paper provides an evaluation equation to predict the torsional moment of the RC beams subjected to pure torsion. The proposed equation is derived from the equilibrium as well as compatibility equations of the truss model for the cracked RC beams. Comparisons between the observed and calculated torsional moments of the 66 tested beams, showed reasonable agreement.

Structural Behavior of Reinforced Concrete Beams using High Strength Shear Reinforcement (고강도 전단보강 철근을 사용한 철근콘크리트 보의 거동평가)

  • Choi, Im-Jun;Park, Jong-Wook;Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.3-4
    • /
    • 2009
  • This study predicts the structural behavior of RC beams using high strength shear reinforcement and evaluates current design codes restricting the strength of shear reinforcement steel. Under the present design codes, the yield strength of shear reinforcement steel is restricted to 400MPa. In case that use high yield strength reinforcement steel, could incure heavily crack and deflection at the members of structure, and have not verified ductility capacity, fatigue resisting capacity, shear and torsion resisting capacity, anchoring capacity and seismic capacity. To this end, we evaluate structural behavior of reinforced concrete beams using high strength shear reinforcement.

  • PDF

Nonlinear Tensile Behavior Analysis of Torque-controlled Expansion Anchors Using Finite Element Analysis (유한요소해석을 활용한 비틀림 제어 확장앵커의 비선형 인장거동 특성 분석)

  • Bang, Jin Soo;Youn, Ilro;Kwon, Yangsu;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.91-99
    • /
    • 2020
  • Post-installed anchors were widely used due to its workable benefits. Regarding the resistance performance of anchors, the critical edge distance is presented to minimize the impact of concrete splitting. In the case of actual anchors, however, it is difficult to obtain the ideal edge distance. The purpose of this study is to identify resistance performance and behavior characteristics that contain complex elements such as concrete crack occurring under tensile load. Tensile tests were conducted based on the standard method. Failure shape and the resistance characteristics that do not have the critical edge distance were derived by tensile load. Parametric analysis according to the boundary condition was performed to simulate the actual tensile behavior, through a nonlinear finite element model based on the specimen. Consequently therefore, verifying analysis results the resistance mechanism can be applied through boundary conditions.

A Study on Strength of Plat-Plate Wall-Column Connections (Wall Column을 적용한 플랫플레이트 접합부 강도발현에 관한 연구)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.257-266
    • /
    • 2006
  • Flat-plate building systems are utilized extensively for construction of apartments, hotels and office buildings because of short construction period, low floor-to-floor height and flexibility in plan design. Recently, to increase lateral seismic resistance of flat-plate building systems, wall-columns are used frequently. Therefore, to estimate strength of flat-plate column connection accurately, the effect of column section shape on the behavior of flat-plate column connection should be considered properly, In the present study, a numerical analysis was performed for interior connections of continuous flat-plate to analyze the effect of column section shape. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. Therefore, these effects should be considered properly to estimate the strength of flat-plate connection accurately.