• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,396, Processing Time 0.031 seconds

An Experimental Study on the Mechanical Properties of High Density Concrete Using Magnetite Aggregate (자철광 골재를 이용하는 철근콘크리트의 역학적 특성에 관한 관험적 연구)

  • 반호용;한천구;김을용
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.81-88
    • /
    • 1990
  • For the protectioon of radioactive leakage, the quality control of main concrete structure in nuclear power plants is very important. So, this studey is designed to analyze the influence of kind of cement and aggregate on the mechanical properties of high density concrete. Test results of this study are as follows; 1)The slump of magnetite aggregate concrete(MAC) is found half value of nat.ural aggregate concrete (NAC). 2)As the effect of cement, the compressive strength of concrete using moderate heat cement is found higher 5-19 % than that of ordinary portland cement. 3)As the effect of fine aggregate, t.he compressive strength of MAC is found higher than that. of NAC below 340kg/$cm^2$ and lower t.han NAC above 340kg/$cm^2$. 4)As the effect of coarse aggregate, the compressive strength of MAC is found higher 17-22% than that of NAC.

Characteristics of Elastic Wave in Fire damaged High Strength Concrete using Impact-echo Method (충격반향기법을 이용한 화해를 입은 고강도 콘크리트의 탄성파 특성)

  • Lee, Jun Cheol;Lee, Chang Joon;Kim, Wha Jung;Lee, Ji Hee
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, the damages of high strength concrete exposed to high temperature have been evaluated by the impact echo method. Elastic wave velocity and dynamic modulus of elasticity were measured by the impact echo method, and the compressive strength and the static modulus of elasticity were measured by the compression testing method after exposure to high temperature. The results showed that elastic wave velocity has a linear correlation with the compressive strength and dynamic modulus of elasticity has a linear correlation with static modulus of elasticity. Based on results, it is concluded that the impact echo method can be effectively applied to evaluate the mechanical properties of fire damaged high strength concrete.

Effects of Steel Fiber Properties on Compressive and Flexural Toughness of Steel Fiber-Reinforced Concrete (강섬유의 특성이 강섬유보강 콘크리트의 압축 및 휨 인성에 미치는 영향)

  • Lim, Dong-Gyun;Jang, Seok-Joon;Jeong, Gwon-Young;Youn, Da-Ae;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2019
  • Effects of tensile strength and aspect ratio of steel fiber on compressive and flexural behavior of steel fiber-reinforced concrete (SFRC) with high- and normal-strength were investigated. Also, this study explores compressive behavior of SFRC with different loading rate. For this purpose, four types of steel fiber were used for SFRC with specified compressive strength of 35 and 60 MPa, respectively. Cylindrical specimens with a diameter of 150 mm and height of 300 mm were made for compression test, and prismatic specimens with a $150{\times}150mm$ cross-section and 450 mm span length were made for flexural test. Test results from compression and flexural tests indicated that the toughness of concrete significant increased with steel fibers. Especially, using steel fiber with high tensile strength and aspect ratio can be lead to performance improvement of high-strength SFRC. In this study, equations are suggested to predict compressive toughness ratio of SFRC from flexural toughness ratio.

Absorption and Strength Properties of Landscape Paving Concrete According to Zeolite Coarse Aggregate Replacement Rate (제올라이트 굵은골재 대체율에 따른 조경포장 콘크리트의 흡수 및 강도 특성)

  • Na, Ok-Pin;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • This study assessed the use of zeolite with high absorption performance in landscape paving concrete as a substitute for aggregate. The absorption performance and strength properties of paving concrete were investigated according to the replacement rate of the zeolite coarse aggregate, and the mechanical properties were investigated through strength tests. The absorption rate of the zeolite aggregate was 14%, which is 2.5 times higher than that of general aggregate. When zeolite coarse aggregate is applied to paving concrete, the absorption rate increases according to the replacement rate. The absorption rate was 5.2% at a replacement rate of 50%, which was 42% higher than that of general paving concrete. The compressive strength increased to 20% of the replacement rate and decreased at a higher replacement, but all the strengths in the construction standard code were satisfied. The flexural strength satisfied the code up to a replacement rate of 10%, but the strength decreased with increasing replacement rate, and the splitting tensile strength was greater than that of paving concrete using general aggregate up to a 20% replacement rate. Overall, zeolite coarse aggregate can be applied as a substitute.

The Effect of Different Curing Time and Temperature on Compressive Strength of Concrete (콘크리트 압축강도에 미치는 양생온도와 양생시점의 영향)

  • 김진근;문영호;어석홍;최응규
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.143-152
    • /
    • 1998
  • 본 연구에서는 콘크리트 강도에 미치는 양생온도의 영향이 양생시점에 따라 어떻게 변하는지에 대한 실험과 기존의 모델식을 이용하여 분석을 수행하였으며, 양생시점의 영향을 고려한 수정된 등가재령식을 제시함으로써 새로운 강도예측식을 개발하기 위한 기초연구이다. 이를 위해 2종류의 물.시멘트비에 대하여 각각 11종류의 양생이력을 고려한 실험을 수행하였다. 실험변수로는 3종류의 양생온도 (5 $^{\circ}C$, 20 $^{\circ}C$, 4$0^{\circ}C$)와 4종류의 양생시점(0~1일. 1~2, 2~3, 6~7일)을 선정하였다. 또 기존의 Saul 및 Arrhenius 모델식을 이용하여 실험결과를 분석하여 양생시점의 영향을 도입한 각각 수정된 등가재령식을 제시하였다. 실험결과에서 초기재령에서 고온 양생한 경우에는 초기에는 높은 강도를 나타내지만 재령이 증가할수록 오히려 낮은 강도를 나타내었다. 또 초기에 저온으로 양생한 콘크리트는 그 반대의 경향을 보였다. 기존의 등가재령식에서는 같은 등가재령에서도 압축강도는 양생시점에 따라 달라짐을 알 수 있었다. 기존의 모델식은 특히 초기재령에서의 강도예측결과가 실험결과와 잘 맞지 않았으나 이 논문에서 제시된 수정된 등가재령식은 실험결과와 잘 일치하는 결과를 보여 주었다.

A Comparative Study on the Environmental Impacts by Concrete Strength Using End-point LCA methodology (피해산정형 전과정평가 기법을 적용한 콘크리트 압축강도별 환경영향 비교 분석 연구)

  • Kim, Sung-Hee;Tae, Sung-Ho;Chae, Chang-U
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • This is a comparative study that shows the overall environmental impacts from concrete structures when different compressive strength of concrete applied to structural systems having the same reference flow with different durability. A total of 24 MPa, 40 MPa and 60 MPa cases is analyzed to define the characteristic using end-point perspective LCA methodology including the stages of production, construction, maintenance and disposal. As results, global warming, non-renewable energy and respiratory inorganics problems are the major issues for assessing environmental impacts of concrete products.

Physical Properties of Permeable Polymer Concrete (투수성 폴리머 콘크리트의 물리적 성질)

  • 최재진;황의환
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • In this paper, permeable polymer concretes with unsaturated polyester or vinylester resin content from 5 to 8 weight %, resin-filler ratio of 1 : 1, sand content from 0 to 15 weight % and crushed stone of size 2.5∼10 mm were prepared, and tested for compressive strength, flexural strength and water permeability. The effects of the resin and sand contents on the properties of permeable polymer concrete were discussed. It is concluded from the test results that increase in the strength and decrease in the coefficient of permeability of the permeable polymer concrete arc clearly observed with increasing the resin and sand contents. The permeable polymer concrete showed compressive strength in the range of 170 to 350 kgf/$\textrm{cm}^2$ and flexural strength in the range of 40 to 90 kgf/$\textrm{cm}^2$ at coefficient of permeability from 0.1 to 1.0 cm/sec in this experiment.

Characteristics Of High Strength Concrete File with the High Powder Slag Cement using Vibration Mill (진동밀로 개질한 고로 슬래그 시멘트를 적용한 고강도 콘크리트 파일의 특성고찰)

  • You, Chang-Dal;Ryu, Deug-Hyun;Kim, Do-Kyun;Yoo, Dong-Woo;Min, Kyung-San;Kim, Sang-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.311-312
    • /
    • 2009
  • By applying the vibrating mill modified slag cement on the concrete pile, the higher compressive strength was measured in spite of its smaller powder volume as comparing its compressive strength with existing products' one. As the result of SEM image observation, it was found that the strength was improved by the decreased size and abundance of pore along with increased cement hydrate in the dense structure.

  • PDF

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

Estimation of Setting Time and Early-age Strength of Concrete Using the Ultrasonic Pulse Velocity (초음파 속도를 이용한 콘크리트의 응결 및 초기 강도 추정)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-Hwan;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.292-303
    • /
    • 2002
  • This paper presents experimental results for early-age properties of concrete such as the setting time and strength, evaluated via the ultrasonic pulse velocity (UPV). Developing and using an automatically-recording monitoring system, the UPV's of mortar and concrete with various water to binder ratios (W/B) were measured during the first 24 hours. In addition, probe penetration and compression tests were conducted to measure the setting time and compressive strength, respectively. It was observed that the UPV's of mortar with high W/B remained constant during the first 6.5 hours and then abruptly began to increase at constant rates. On the other hand, the UPV of mortar with low W/B increased relatively slowly and gradually due to the setting retardation caused by the use of high range water reducing agent (HRWR). It was found that setting of concrete occurs when the UPV reaches a certain value. Moreover, it was concluded that the estimation formulas should incorporate the effects of W/B to more accurately estimate the early-age strength of concrete from the UPV.