• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,396, Processing Time 0.023 seconds

Bond Strength of Reinforcing Steel to High-Performance Concrete Using Belite Cement (고성능 Belite 시멘트 콘크리트의 철근 부착성능)

  • Kim, Sang-Jun;Cho, Pil-Kyu;Hur, Jun;Choi, Oan-Chul
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.169-178
    • /
    • 1998
  • Bond strength of reinforcing bar to high-perfomance concrete using belite cement is explored using beam end test specimens. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete cover. The test results show that the specimens with belite cement concrete show approximately 10% higer bond strength than those with portland cement concrete. The results also show that the bond strength from the high strength concrete is function of the square root of concrete compressive strength. Bond strength of the top bar is less than bond strength of bottom bar, but the ratios of the bond strength of bottom-cast bars to those for top-cast bars are much less than the modification factor for top reinforcement found in the ACI 318-95 code. Comparisons with other reported tests identified that belite cement increased bond strength while silica fume or flyash used in high strength concrete decreased bond strength. The high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

Punching Shear Behavior of High-strength Lightweight Concrete Slab Under Concentrated Load (집중하중을 받는 고강도 경량콘크리트 바닥판의 펀칭전단 거동)

  • Cho, Sun-Kyu;Kwark, Jong-Won;Lee, Jong-Min;Moon, Dae-Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.219-228
    • /
    • 2006
  • Because of the advantage of light weight, lightweight concrete is frequently applied to long-span bridges and high-rise buildings. In the country, there is not enough experience for the long-span bridges using lightweight concrete. This paper presents results of an experimental study on the punching shear strength of high-strength lightweight concrete slabs. Four test slabs are fabricated using high-strength lightweight concrete and normalweight concrete and at the center of the test slabs, simulated wheel load is applied until failure. The compressive strengths of lightweight concrete and normalweight concrete are 47MPa and 32MPa, respectively. The test results show the failure mode of all specimens are punching shear and the behaviors of high-strength lightweight concrete slabs are very similar to that of normalweight concrete slabs. Based on the test results, it is discussed the safety and serviceability of high-strength lightweight concrete bridge decks.

Stress-strain Model of Laterally Confined High-strength Concrete with the Compressive Fracture Energy (압축파괴에너지를 도입한 횡구속 고강도 콘크리트의 응력-변형률 모델)

  • Hong, Ki-Nam;Shim, Won-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • In this paper, a stress-strain model for high-strength confined concrete is proposed using compressive fracture energy. In the compression test performed by author in Reference [6], an acrylic bar with strain gauges was embedded in the center of the specimen to measure the local strain distribution. It was found from the test that the local strain measurement by this acrylic rod is very effective. The local fracture zone length was defined based on the local strain distribution measured by the acrylic rod. Specifically, it was defined as the length where the local strain increases more than twice of the strain corresponding to maximum stress. In addition, the stress-strain relationship of confined concrete with compressive fracture energy is proposed on the assumption that the amount of energy absorbed by the compressive members subjected to the given lateral confining pressure is constant regardless of the aspect ratio and size. The proposed model predicts even results from other researchers accurately.

Mechanical Properties of Recycled Aggregate Concrete Containing Fly Ash (순환골재를 이용한 플라이애시 콘크리트의 역학적 특성)

  • Yang, In-Hwan;Jeon, Byeong-Gwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • The mechanical properties such as compressive strength and elastic modulus of recycled aggregate concrete containing fly ash are investigated in this study. The experimental parameters were replacement ratio of recycled coarse aggregate(RCA) and fly ash. Replacement ratio of RCA was 0, 30, 50, and 70% and replacement ratio of fly ash was 0, 15, 30%. The experimental results were extensively discussed about compressive strength and elastic modulus of concrete at ages of 7, 28 and 91 days. Compared with concrete not containing fly ash, the decrease of compressive strength and elastic modulus of concrete containing fly ash with the replacement ratio of 30% was significant. Therefore, the test results represented that the fly ash replacement ratio of less than 30% was favorable in terms of mechanical properties of recycled coarse aggregate concrete.

Modeling of Material Properties of Fiber-Reinforced High Strength Concrete (섬유 보강 고강도 콘크리트의 재료 특성 모델링)

  • Yang, In-Hwan;Park, Ji-Hun;Choe, Jeong-Seon;Joh, Changbin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, material properties of steel fiber reinforced high strength concrete (FRHSC) with the compressive strength of about 120MPa were modeled. Steel fiber content of 1.0%, 1.5%, and 2.0% was considered as experimental variable. First of all, compressive strength tests were carried out to determine compressive characteristics of concrete, and compressive stress-strain curves were modeled. For conventional concrete with moderate compressive strength, the stress-strain curves are in the form of parabolic curves, but in the case of high strength concrete reinforced with steel fiber, the curves increase linearly in the form of the straight line. In addition, to understand the tensile properties of FRHSC, the crack mouth opening displacement (CMOD) test was performed, and the tensile stress-CMOD curve was calculated through inverse analysis. When the steel fiber content increased from 1.0% to 1.5%, there was a significant difference of tensile strength. However, when the amount of steel fiber was increased from 1.5% to 2.0%, there was no significant difference of tensile strength, which might result from the poor dispersion and arrangement of steel fiber in concrete.

A Study on the Effect of Blast-Vibration on Curing Lining-Concrete (발파진동이 양생중인 라이닝 콘크리트에 미치는 영향에 관한 연구)

  • 신일재;이정인
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 2000
  • 현재까지 진동이 양생중인 콘크리트에 미치는 영향을 알아보기 위해 수행된 대부분의 연구에서는 콘크리트 공시체나 콘크리트 블록에 대해 100Hz 미만의 주주파수를 가지는 충격진동이나 진동테이블을 이용한 진동을 가한 후 콘크리트의 강도 변화를 평가하는 방법이 사용되었다. 이 연구에서는 발파진동이 양생중인 라이닝 콘크리트에 미치는 영향을 알아보기 우해 실험실 충격진동 시험과 터널 현장에서의 발파진동 시험을 수행하였다. 터널발파진동과 유사한 100~300Hz의 주주파수를 가지 충격진동을 각각 재령 3, 7, 12 시간에 다한 실험실 시험결과 2cm/sec의 진동속도는 모르타르 라이닝의 P파속도를 증가시키지만, 5 cm/sec, 10cm/sec의진동의 모르타르 라이닝의 P파 속도를 감소시킬 수 있는 것으로 나타났다. 양생기간동안 2.5 cm/sec 이하의 발파진동이 가해진 양생중인 라이닝 콘크리트는 진동을 가하지 않고 양생시킨 콘크리트 공시체에 비해 압축강도가 더 큰 값을 나타내었다. 재령 5시간에 콘크리트 라이닝애 대한 소규모 시험발파로 발파진동을 가한 콘크리트 시료와 진동을 가하지 않고 터널 내에서 양생시킨 공시체에 대해 압축강도를 비교한 결과 콘크리트의 강도 및 탄성파 속도를 저하시킬 수 있는 진동수준은 3~4cm/sec 인 것 으로 나타났다.로 나타났다.

  • PDF

Experimental Evaluation of Pullout Strength of Long-Rawlplug Screw Anchor according to the Compressive Strength of Concrete and Embedded Length (콘크리트 압축강도 및 매입깊이에 따른 긴 칼블럭앵커의 뽑힘강도 평가)

  • Park, Jun-Ryeol;Yang, Keun-Hyeok;Kim, Sang-Hee;Oh, Na-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.84-89
    • /
    • 2021
  • In 2017, the Gyeongju earthquake caused many casualties and considerable property damage by overturning and dropping blocks and bricks. Various reinforcement techniques were proposed, but some problems, such as short length or difficult construction, were encountered. Therefore, this study proposes a long-rawlplug screw anchor to improve the existing rawlplug anchor and conducts an experiment to evaluate the pullout strength. Variables in the pullout test were the compressive strength of concrete and the embedded length of the long-rawlplug screw anchor. According to the results, the pullout strength of the long-rawlplug screw anchor increased as the compressive strength of concrete increased, and they were not affected by the embedded length. Rather, it was found that the screw length of the long-rawlplug was important to the pullout strength.

An Experimental Study on Strength for the bolt connections of Composite using Deep Corrugated Strugated Plate (강합성 빔 보강 브릿지 플레이트의 이음부 보강에 따른 강도 평가에 대한 실험적 연구)

  • Oh, Hong-Seob;Jun, Beong-Gun;Lee, Ju-Won;Park, Sung-Rak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.93-94
    • /
    • 2010
  • The purpose of this research is to evaluate the strength of the connections deep corrugated strugated plate. As the result a composite using Deep Corrugated Strugated Plate is have doubled improved compressive strength. Used 10,000KN and 5,000KN UTM to experiment.

  • PDF

Evaluation of Compressive Strength and Freeze-thaw Resistance Properties of Concrete using Superabsorbent Polymer (고 흡수성 폴리머를 혼입한 콘크리트의 압축 강도 및 동결융해 저항성 평가)

  • Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.86-94
    • /
    • 2020
  • When the Superabsorbent Polymer (SAP) is added into concrete, the slump decreases rapidly, deteriorating the workability, the internal curing effect can be obtained through the water absorption and discharge process, and the internal voids of the concrete are increased. In this study, the effects of internal curing and voids were evaluated by evaluating the compressive strength, freeze-thaw resistance, and chloride penetration resistance of SAP-adding concrete that secured workability using a water reducing agent. Also, the internal curing effect of SAP was evaluated by dividing the curing conditions of concrete into water curing and sealed curing. From the result, as the SAP adding ratio increased, the amount of water reducing agent increased, and as for the compressive strength, the SAP adding ratio of 1.5% showed the greatest compressive strength. In particular, in the case of sealed curing showed higher compressive strength than the water curing. It is considered that the compressive strength increased due to the reduction of the effective water-cement ratio and the internal curing effect. Adding 1.0~1.5% of SAP improved the freeze-thaw resistance similar to the case of adding the AE agent, and the addition of more than 1.0% of SAP improved the chloride penetration resistance. The optimal adding ratio of SAP is 1.5%, and the adding ratio of 2.0% or more adversely affects the compressive strength and freeze-thaw resistance.

The Influence of Compressive Strength and Moisture Contents on Explosive Spalling of Concrete (압축강도 및 함수율이 콘크리트의 폭렬에 미치는 영향)

  • Kim, Dong-Joon;Han, Byung-Chan;Lee, Jae-Young;Harada, Kazunori;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • In the high temperature situation like in a fire, the high strength of concrete (HSC) has extreme danger named explosive spalling. It is assumed that the major cause of explosive spalling is water vapour pressure inside concrete. This paper examines the effect of the compressive strength and the moisture content on the initial occurrence of explosive spalling. For the effective experiment of the initial explosive spalling, the curve of ISO834 temperature profile is applied on the basis of 15 minute and 30 minute. As a result, the more increase the compressive strength and the moisture content, the more increase the occurrence and phenomenon of explosive spalling. This paper analyzes the territory of explosive spalling depending the compressive strength and the moisture content. The explosive spalling is not examined in the case of the compressive strength 50~100 MPa and the moisture content below 3% and the compressive strength over 100 MPa and the moisture content below 1%. Also, due to the HSC, which makes it more difficult to transport vapour and moisture, very high vapour-pressure may occur close to the surface, there is a greater risk that HSC spalls compared with normal strength concrete (NSC).