• Title/Summary/Keyword: 코어 드릴

Search Result 12, Processing Time 0.025 seconds

Highly Precise and Efficient Drilling of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 고정도, 고능률 드릴링 가공)

  • 박규열;최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3175-3184
    • /
    • 1994
  • The high strength and wear-resistant metal bonded diamond wheel was applied to the drilling process of carbon fiber reinforced plastics (CFRP), The helical-feed drilling method was use for the first time to overcome the limit of drilling depth of the conventional drilling process and to improve the dressing of the wheel. The helical-feed drilling method was found effective at high cutting speed without the limit of drilling depth.

A Study on Thermal Behavior and Reliability Characteristics of PCBs with a Carbon CCL (카본 CCL이 적용된 PCB의 열거동 및 신뢰성 특성 연구)

  • Cho, Seunghyun;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, the Thermal behavior and reliability characteristics of carbon CCL (Copper Claded Layer), which can be used as the core of HDI (High Density Interconnection) PCB (Printed Circuit Board) are evaluated through experiments and numerical analysis using CAE (Computer Aided Engineering) software. For the characterization of the carbon CCL, it is compared with the conventional FR-4 core and Heavy Cu core. From research results, the deformation amount of the flexure strength of PCB is the highest with pitch grade carbon and thermal behavior of PCB is lowest as temperature increases. In addition, TC (Thermal Cycling), LLTS (Liquid-to-Liquid Thermal Shock) and Humidity tests have been applied in the PCB with carbon core and the reliability of PCB with carbon core is confirmed through reliability tests. Also, possibility of uneven surface of the via hole and wear of the drill bit due to the carbon fibers are analyzed. surface of the via hole is uniform, the surface of the drill bit is smooth. Therefore, it is proved that the carbon CCL has the drilling workability of the same level as conventional core material.

An Empirical Approach for Improving the Estimation of the Concrete Compressive Strength Considered the Effect of Age and Drilled Core Sample (재령과 코어의 영향을 고려한 향상된 콘크리트 압축강도 추정기법의 경험적 제안)

  • Oh, Hongseob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.103-111
    • /
    • 2015
  • To evaluate the compressive strength of concrete, rebound test and ultra pulse velocity methods as well as core test were widely used. The predicted strength effected by age, maturity and degradation of concrete, is a slight difference between in-situ concrete strength. The compressive strength of standard cylinder specimens and core samples by obtained from drilling will have a difference since the concrete is disturbed during the drilling by machinery. And the rebound number and ultra pulse velocity are also changed according to the age and maturity of concrete that effected to the surface hardness and microscpic minuteness. The authors performed the experimental work to reflect the age and core effect to the results from NDE test. The test results considering on the core and age of concrete were compaired with the proposed equation to predict the compressive strength.

A Study of the Effectiveness of Hollow Ratio on Cutting Force of Diamond Core Drill (다이아몬드 코어드릴의 중공비가 절삭력에 미치는 영향)

  • Kim, Kwang-Min;Choi, Seong-Dae;Hong, Young-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.135-141
    • /
    • 2011
  • In this study, the variation of the cutting forces generated in the machining process were evaluated experimentally. A material of $Al_{2}O_{3}$ ceramic and a tool of the dynamometer were used for the measurements of the cutting forces. With the constant rates of the feed and the tool rotation, the cutting forces were measured along three axial directions(X, Y, Z axis) for the various values of the hollow ratio. It was found that the cutting force be increasing linearly along the direction of Z axis, but along X, Y axis be not varied. Also from the viewpoint of the precesses of the hole drilling, the cutting force was found to be increasing sharply at the beginning process, but from the eighth process be increasing smoothly. As conclusions, the cutting force generated by machining for the material of $Al_{2}O_{3}$ ceramic are influenced more significantly by the feed rate and the hollow ratio than by the tool rotational speed.

A Study on Heat Transfer Characteristics of PCBs with a Carbon CCL (카본 CCL에 의한 PCB의 열전달 특성 연구)

  • Cho, Seunghyun;Jang, Junyoung;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.37-46
    • /
    • 2015
  • In this paper, the heat transfer characteristics of PCB (Printed Circuit Board) with cabon CCL (Copper Claded Layer) were studied through experiments and numerical analysis to compare of PCBs with conventional the FR-4 core and heavy copper cores. For study, samples are producted with HDI (High Density Interconnection) PCB of mobile phone with variations of thickness of core materials and grades of carbon material to evaluate heat transfer characteristics respectively. From this research results, heat transfer characteristics of the carbon core was rather low than heavy copper, but better than FR-4 core. In addition, even though the carbon and heavy copper core contributed on the heat transfer characteristics as their thickness increases, FR-4 cores disturbed heat transfer characteristics as it's thickness increases. Therefore, carbon core is recommendable to improve the heat transfer characteristics of the PCB because heavy copper core has much disadvantages such as increasing of wear of drill, the weight of PCB, and manufacturing cost by additional insulation materials for electrical insulation.

A Study on the Wear Monitoring Technique for Diamond Core Drill (다이아몬드 코어 드릴의 마멸 검출에 관한 연구)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.38-45
    • /
    • 1995
  • The diagnosis and monitoring system of abnormal cutting condition is necessary to realize precision machining proces and factory automation, which are final goal of metal cutting in order to develop this system, theimage processing technique has been investigated in machining process. In theis paper, the measurement system of tool wear using computer vision is designed to detect the wear pattern by non-contact and direct method and get the realiable wear information about cutting tool. We measured the area of the side and front part of the diamond core dril which is used in 40kHz ultrasonic vibration machine.

  • PDF

A Study on Shape Optimization of Impregnated Bit (Impregnated Bit의 형상 최적화에 관한 연구)

  • Youm, Kwang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.60-66
    • /
    • 2021
  • The core is extracted through drilling and used to evaluate the feasibility of developing mineral resources. To extract the core, a bit is installed in the forefront of the drilling device for drilling. Here, the drill bit receives stress due to direct friction against the ground. In addition, a bit appropriate for the given ground condition should be used due to the possibility of damaging a bit as a result of friction. This paper used a current bit model based on an impregnated bit and analyzed a new bit model that uses a stiffener of similar/disparate materials. The hardness and deflective strength were then evaluated by modeling the shape of impregnated bit through a calculation based on a theoretical formula. Through FEM analysis of the existing model and the new model, the stress and strain calculation results were optimized to minimize the stress and strain with a stress of 1.92 × 107 Pa and a strain of 9.6× 10-5 m/m.

Drilling Characteristics and Modeling of Diamond Core Drilling Processes (다이아몬드 코어드릴 공정의 구멍가공 특성과 모델링)

  • Yoon, Kwan-Woo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.95-103
    • /
    • 2008
  • Diamond core drills are applied to drill difficult-to-cut materials. This paper proposes basic understanding of ceramic drilling mechanics and characteristics of main factors affecting tool life, tool wear, cutting force, and chipping thickness. In contrast to conventional drilling, the core drilling process make deep grooves on the workpiece. One difficulty of it is the evacuation of chips from the drilled groove. As the drilling depth increases, an increased amount of chips tend to cluster together and clog the groove. Eventually severe wear develops and diamond grits are separated from the drill body. To relieve the clogging problem and to evacuate chips from the groove easily, the helical drilling process is applied for the core drilling process. To analyze drilling characteristics and derive optimal drilling conditions, tool life, tool wear, cutting force, and chipping thickness are quantified through the monitoring system and the Taguchi method. Mathematical models for the tool life and chipping thickness are derived from the response surface method. Optimal drilling database has been constructed through the experimental models.

A Study on the Controller of Core-Drill for Concrete-Wall (콘크리트벽 천공용 코어드릴의 제어기에 관한 연구)

  • Kim, J.S.;Lee, H.G.;Nam, S.B.;Ma, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.191-193
    • /
    • 2006
  • We use electric drill for cutting wood. In electric drills, there is the core-drill that bores concrete-wall. The core-drill is used in construction or remodeling areas. Therefore we require safety in working with the core-drill. In this paper, new controller of core-drill for concrete-wall is proposed. Experimental results show the validity of the proposed controller.

  • PDF

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.