Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.545-548
/
2023
본 논문에서는 골프 코스 시뮬레이션을 위해 수집된 데이터의 정제 및 처리에 요구되는 딥 러닝 모델과 모델 적용 과정에 대해서 논의한다. 최근 스크린 골프 시장의 확대와 골프 시뮬레이터 기술의 발전으로, 위성 이미지, 항공 촬영 이미지, 공간 정보 시스템 (GIS) 등 다양한 데이터 소스로부터 골프 코스에 대한 정보를 수집에 대한 요구가 증가하였다. 이번 연구에서는 이러한 데이터 소스로부터 생성된 원시 데이터를 최적의 시뮬레이션 입력으로 변환하기 위한 컴퓨터 비전 기법과 딥 러닝 모델 구조에 대해서 검토한다. 특히, 데이터에서 골프 코스 시뮬레이션에 요구되는 메타 데이터를 도출하기 위해 코스 분할(Segmentation)과 코스 오브젝트 분류(Classification) 모델을 적용하는 과정을 다룬다. 이를 통해, 본 연구는 골프 코스 시뮬레이터의 개발 과정에서 중요한 기술 요소를 제공하며, 이는 시뮬레이션의 정확도와 골프 코스의 다양성을 증진시키는데에 기여한다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2015.07a
/
pp.278-279
/
2015
해기사의 해사영어 사용에 대한 체계적 교육의 필요성이 증가되는 가운데, 국제해사기구(IMO)는 이에 발맞추어 해사영어모델코스 3.17을 일반해사영어(General Maritime English, 즉 GME)와 특수해사영어(Specialized Maritime English, 즉 SME)로 나누어 재편하고, STCW에서 요구하는 지식, 이해 및 기술사항들을 영어교육의 다양한 요소들과 접합함으로써, 해사영어교육의 새로운 틀을 만들고자 시도하고 있다. 국내 해기교육 관련대학 및 기관이 향후 해사영어 커리큘럼을 재편성하기 위해서는, 개정될 해사영어모델코스의 주요 내용을 이해하고, 이를 국내 실정에 맞게 적용할 수 있도록 다양한 방안을 모색하는 것이 선행되어야 한다. 따라서 본 연구에서는, 국제해사기구가 제시한 해사영어모델코스 3.17의 개정 목적 및 변화된 해사영어모델코스의 틀과 방향을 살펴보고, 향후 국내교육기관에서의 해사영어교육 커리큘럼을 재편성한 후, 성공적인 언어교육서비스 제공을 하기 위해 고려해야 할 현실적인 제한 요소들을 살펴보고, 이에 대한 해결책을 모색하고자 한다.
The Journal of Korean Association of Computer Education
/
v.3
no.1
/
pp.177-189
/
2000
This paper describes the design and implementation of Korean History Web courseware using semantic network in order to build learning environment in the viewpoint of cognitive flexibility theory. The most important thing in design for a courseware using semantic network is to build learning environment. The first step to do this is to analyze learning contents and after that we should define the type of link between learning subjects. We should develope the knowledge map which has the link of each type connected with every learning subject.
그래핀에 대한 이론 연구는 주로 계산이 용이한 코스그레인 (Coarse-grained) 모델을 이용한 분자동역학 시뮬레이션을 토대로 이루어져 왔다. 하지만 그래핀 고분자 복합체, 표면이 개질된 그래핀의 구조 등에 대한 원자 수준의 총체적인 정보는 거시적인 (Macroscopic) 코스그레인 모델을 바탕으로 한 분자동역학 시뮬레이션으로는 얻을 수 없다. 따라서 본 연구에서는 전자구조 계산 및 원자 수준 모델의 Born Oppenheimer Molecular Dynamics를 이용하여 작은 그래핀 분자의 구조 (Structure)와 형태동역학 (Conformational Dynamics)에 대한 정보를 얻고, 이를 바탕으로 한 코스그레인 모델을 구축하였다. 더 나아가 이 코스그레인 모델을 이용하여 전기전도성 네트워크와 고분자-그래핀 복합체의 구조 등에 대해 살펴보고자 한다.
Proceedings of the Korea Society for Simulation Conference
/
2000.11a
/
pp.235-240
/
2000
현재 웹 코스웨어의 대부분은 하이퍼텍스트 문서들간의 비선형적인 연결에 의한 학습 방식을 채택하고 있으나, 이는 단순한 페이지 링크형 학습으로서 그리 커다란 교육 효과를 발휘하기에는 어렵다는 한계를 맞이하고 있다. 이러한 상황에서 다중 학습자가 동기적으로 참여하는 시뮬레이션 게임 방식은 웹 코스웨어의 현재 한계를 뛰어넘을 수 있는 하나의 교수·학습 모델이 될 수 있을 것으로 기대된다. 이에 본 논문에서는 다중 학습자가 동기적으로 참여하는 시뮬레이션 게임 방식의 웹 코스웨어에 대한 수업 모델을 제안하고 있다. 이 수업 모델은 Atkinson의 체제적 접근 방식의 게임 설계, Alessi와 Trollip의 시뮬레이션의 구조와 절차, Reigeluth와 Schwartz의 시뮬레이션에서의 학습자 역할에 대한 분석 연구를 기반으로 설계하였다.
To help users who are experiencing difficulties finding the right learning course corresponding to their level of proficiency, we developed a recommendation model for personalized learning course for Intelligence Tutoring System(ITS). The Personalized Learning Course Recommendation model for ITS analyzes the learner profile and extracts the keyword by calculating the weight of each word. The similarity of vector between extracted words is measured through the cosine similarity method. Finally, the three courses of top similarity are recommended for learners. To analyze the effects of the recommendation model, we applied the recommendation model to the Women's ability development center. And mean, standard deviation, skewness, and kurtosis values of question items were calculated through the satisfaction survey. The results of the experiment showed high satisfaction levels in accuracy, novelty, self-reference and usefulness, which proved the effectiveness of the recommendation model. This study is meaningful in the sense that it suggested a learner-centered recommendation system based on machine learning, which has not been researched enough both in domestic, foreign domains.
본 논문은 사용자 수준에 적합한 맞춤형 학습코스를 추천하여 학습효과를 향상시킬 수 있는 추천모델을 개발하고, 효과분석을 위한 방안을 제시한다. 학습자 개개인의 학습수준이나 학습내용 등에 따라 적합한 학습주제를 선정하여 제공하는 것은 중요하나, 일반적인 추천은 전문가 그룹을 활용한 사람중심의 추천으로 시간이 오래 걸리는 등 자원의 비효율적 한계점[1]을 가지고 있다. 이를 극복하기 위해, TF-IDF를 이용해 단어별 가중치를 계산하여 고빈도 단어를 추출하여 벡터 공간에 배치시키고, Cosine Similarity 기법을 이용해 벡터간의 유사도를 측정하였다. 학습자 프로파일을 분석하고, 학습스킬간의 연관성을 고려하여 맞춤형 학습코스를 추천하기 위해, 워드 임베딩 기법을 적용하였고, 이를 위해 오픈소스 Gensim[2]을 이용하였다. 맞춤형 학습코스 추천 모델의 효과를 분석하기 위한 실험을 설계하고 평가 문항지를 개발하였다.
Journal of The Korean Association of Information Education
/
v.3
no.2
/
pp.85-93
/
2000
The good courseware must have the me끼ts of computer and must be designed according to principles of instruction. Therefore, we propose a model of learning structure for tutorial web courseware on the basis of elaboration theory that can give us the suitable design strategies of contents for web courseware. This model is suited to the level learning and individual learning because it is constructed of six factors - epitome, precedence learning, basis learning, depth learning, summarizer, synthesizer. We also make a tutorial web courseware to apply this model and evaluate effects in comparison with the existing tutorial web coursewares.
나노과학에 대한 다양한 실험적 연구와 이론적 연구가 활발해지고 전문화 되어감에 따라 나노물질에 대해 연구하는 것은 더욱 중요해지고 있는 추세이다. 현재 고분자 나노물질들은 코팅, 광전자 부품, 자기 매체, 세라믹 등에 활발하게 이용되고 있으며 그 활용 범위가 더 커질 것으로 전망된다. 지난 몇 년간 사각기둥 형태의 구조체 내부에서 존재하는 고분자의 움직임에 대한 연구는 다양하게 진행되어왔다. 그러나 고분자들을 더욱 유용하게 응용하여 이용하기 위해서는 나노입자 기술과 연결시켜 보다 다양한 환경에서의 고분자의 상태를 자세하게 이해해야 할 필요가 있다. 고분자 물질에 대한 이론적 연구는 주로 계산이 용이한 거시적인 모델인 코스그레인(Coarse-grained) 모델을 이용한 컴퓨터 시뮬레이션을 통해 이루어져왔다. 본 연구에서도 에디슨 서버에 탑재된 코스그레인 모델을 이용한 분자 모델링 시뮬레이션을 통해 제한된 공간 안에서 다양한 구조체들의 내부에서 고분자의 구조를 계산하고, 시뮬레이션의 결과값과 Flory의 공식을 이용한 이론적인 계산값이 얼마나 잘 맞아 떨어지는지에 대해 알아보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.