• Title/Summary/Keyword: 코발트-60

Search Result 91, Processing Time 0.017 seconds

Behavior of Cobalt Extraction from Cobalt Sulphate solution using Supercritical 2 (황산코발트용액(溶液)으로부터 초임계(超臨界CO2에 의한 코발트 추출거동(抽出擧動))

  • Shin, Shun-Myung;Joo, Sung-Ho;Sohn, Jeong-Soo;Kang, Jin-Gu
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.78-82
    • /
    • 2011
  • Supercritical $CO_2$($scCO_2$) extraction has a great possibility to be a new process to recover metal and to replace the existing leaching/solvent extraction processes. The cobalt extraction was carried out using $scCO_2$ from cobalt sulphate solution. The bis (2,4,4-trimethylpentyl) phosphinic acid and diethylamine ligands were used to extract cobalt ion in $scCO_2$. The recommended method consists of $scCO_2$/extractants complexation process and metal extraction process at 60, 200bar. Experimental results showed that the extraction efficiency of Co was increased by 16-99% with increasing the ligand amount.

The study on the separation characteristics of heavy metal ion by inorganic oxides and ion exchange resin (무기산화물 및 이온교환수지에 의한중금속 이온 분리특성 연구)

  • Dan, Cheol Ho;Kim, eong Ho;Yang, Hyun Soo
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The effectiveness of inorganic oxides (DT-30), anionic exchange resin (DT-60) and carbon absorbent (DT-80, DT-90) on the equilibrium and continuous separation characteristics and removal of cobalt, cesium and iodide ion in the waste water was investigated. As a result, DT-30, DT-80 or DT-90, and DT-60 showed excellent separation properties on the cesium, cobalt and iodide respectively. In the equilibrium experiment, the adsorption amount of cesium for DT-30 increased with temperature, but increasd largely with pH. In case of DT-80, adsorption of cobalt was depended on pH but was not influenced by temperature. In the continuous system by passing a heavy metal ion solution through the ion exchange tower, DT-30, DT-90 and DT-60 showed good separation characteristic for cesium, cobalt and iodide respectively. In this case, separation characterization of DT-30 on the cesium and of DT-60 on the iodide were better than that of DT-90 on the cobalt. From the experiment on the effect of impurities on the ion exchange characteristics, impurities such as surfactant and oil did not influence the efficiency of DT-90. In the mean while, ion separation capacity of DT-30 were decreased largely by impurities such as surfactant and oil. Also, surfactant had a strong influence on the effectiveness of DT-60. Accordingly, it turned out to be very important thing that impurities should be removed in the preprocessing stage.

  • PDF

Effect of Dry Grinding of Laterite on the Extraction of Nickel and Cobalt (라테라이트광의 건식분쇄가 니켈 및 코발트의 침출에 미치는 영향)

  • Kim, Wan-Tae;Choi, Do-Young;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • We investigated the effect of dry grinding of laterite on the extraction of nickel and cobalt. The major chemical compositions of the sample for this work were $SiO_2$, $Fe_2O_3$ and MgO. The sample contained 0.81% Ni and 0.02% Co. The major minerals of the sample were lizardite and quartz with minor amounts of forsterite and enstatite. The mean particle size, specific surface area and density of the ground sample decreased with increasing grinding time, while the amorphization of lizardite increased as identified by XRD analysis. The grinding enabled the extraction ratio of Ni and Co to increase by the breakdown of Mg-OH bonding in the lizardite structure. However, physical properties of quartz were not changed by grinding. The extraction ratio of Ni and Co increased with increasing grinding time. Approximately 80% of Ni and Co were extracted regardless of the kind of acid solutions when the sample was ground for 60 minutes.

활성탄을 이용한 방사성 폐액중 코발트의 제거특성

  • Kang, Mun-Ja;Kim, Jun-Hyeong;Yoon, Bong-Yo;Kim, Cheol
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.126-129
    • /
    • 1994
  • 이온에 대한 선택적인 흡착능력이 있는 활성탄을 사용하여 방사성폐액중의 $^{60}$Co의 제거특성을 살펴보았는데, 40-70메시크기의 활성탄은 폐액에대해 0.002g/m1 사용하면 98%의 제거율을 얻을 수 있었고 폐액내의 코발트 농도가 7.5$\times$$10^{-2}$ppm이하이면 98%이상의 제거율을 나타내었다. 그리고 활성탄에대한 코발트이온의 흡착에 나트륨, 세슘이온은 전혀 영향을 주지 않았으며 니켈은 코발트와 같은 정도로 흡착되었고 철은 코발트보다 흡착특성이 좋음을 알 수 있었다.

  • PDF

고무와 아연의 접착에 있어서 나프텐산코발트 첨가의 효과

  • HoJeon, Do-Bu
    • The tire
    • /
    • s.75
    • /
    • pp.15-23
    • /
    • 1978
  • 금속염을 첨가한 고무를 아연판과 접착가황하여 아연면의 첨가금속과 유황의 분포를 XMA에 의해 구했다. 가황중에 아연면으로 이행하는 것은 Co, Cu, Pb를 포함한 유기금속염뿐이였다. 고무 속의 유리유황도 이들 금속염과 함께 아연판으로 이행되어 왔다. 나프텐산코발트 중의 Co는 아연층내에 확산되어 분포된 데 반하여, S는 아연판표면에만 분포되어 있다. 양자가 아연판으로 이행되는 양은 첨가량에 비례해서 증가하였다. 고무와 아연판의 접착력은 Co량 0.6%까지는 증가하고, 그 이상의 첨가에서는 현저하게 저하되었다. 나프텐산코발트의 첨가량을 증가시키면 가황고무 중의 망목쇄농도는 변하지 않으나 유리유황은 감소하였다. 가황고무 중의 잔류나프텐산코발트는 60℃이상의 열처리온도에서 산화를 촉진하고 접착력도 저하시킨다. 카아본블랙을 배합하지 않은 NR의 유전거동보다 첨가한 나프텐산코발트는 가황온도에서 고무 분자의 주쇄 Segment의 완화 mode에 영향을 준다는 것을 알았다.

  • PDF

Changes in Cobalt Adsorption Properties of Montmorillonite by Dehydration (탈수 작용에 따른 몬모릴로나이트의 코발트 흡착 특성 변화)

  • Yeongjun Jang;Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.107-115
    • /
    • 2023
  • Cobalt can be released into the natural environment as industrial waste from the alloying industry and as acid mine drainage, and it is also a radionuclide (60Co) that constitutes high-level radioactive waste. Smectite is a mineral that can be useful for adsorption and isolation of this element. In this study, Cheto-type montmorillonite (Cheto-MM), which is the source clays of The Clay Mineral Society (CMS) and already well-characterized, was used. The effect of the adsorption site affected by the presence of interlayer water on the adsorption of cobalt before and after dehydration by heating was evaluated and the adsorption mechanism of cobalt on Cheto-MM was studied by applying adsorption kinetics and adsorption isotherm models. The results showed that the adsorption characteristics changed with dehydration and subsequent shrinkage, and cobalt was found to be adsorbed at the edge of Cheto-MM for about 38% and adsorbed at the interlayer site for about 62%, suggesting that the cobalt adsorption of Cheto-MM is significantly influenced by the interlayer. By applying the adsorption kinetic models, the cobalt adsorption kinetics of Cheto-MM is explained by a pseudo-second-order model, and the concentration-dependent adsorption was best described by the Langmuir isotherm adsorption model. This study provides basic knowledge on the adsorption characteristic of cobalt on montmorillonite with different adsorption sites and is expected to be useful in predicting the adsorption behavior of smectite in high-level radioactive waste disposal sites in the future.

Construction of Semi-universal Wedge Filter and Clinical Application for Co-60 Teletherapy Unit (코발트60 원격치료기에 대한 Semiuniversal Wedge Filter의 제작과 임상응용)

  • Kim, Myung-Ho;Yun, Suk-Rok;Shin, Dong-Oh
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.3 no.1
    • /
    • pp.45-50
    • /
    • 1989
  • Wedge filter are used in high energy radiation therapy to obtain uniform isodose lines at small volume tumor and irregular body surface. The aim of this study is not only to describe the method of construction and setting of semi-universal wedge filter for $^{60}Co$ radiation therapy but also to get the optimum treatment planning by clinical application of wedge filter.

  • PDF

A Study on the Cobalt and Lithium Recovery from the Production Scraps of Lithium Secondary Battery by High Efficient and Eco-friendly Method (이차전지(二次電池) 제조공정(製造工程)스크랩으로부터 고효율(高效率) 親環境(친환경) 코발트(Co)와 리튬(Li)의 회수(回收)에 관(關)한 연구(硏究))

  • Lee, Jeong-Joo;Chung, Jin-Do
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.51-60
    • /
    • 2010
  • A study on the recovery of cobalt and lithium from Lithium Ion Battery(LIB) scraps has been carried out by a physical treatment - leaching - solvent extraction process. The cathode scraps of LIB in production were used as a material of this experiment. The best condition for recovering cobalt from the anode scraps was acquired in each process. The cathode scraps are dissolved in 2M sulfuric acid solution with hydrogen peroxide at $95^{\circ}C$, 700 rpm. The cobalt is concentrated from the leaching solution by means of a solvent extraction circuit with bis(2-ethylhexyl) phosphoric acid(D2EHPA) and PC88A in kerosene, and then cobalt and lithium are recovered as cobalt hydroxide and lithium carbonate by precipitation technology. The purity of cobalt oxide powder was over 99.98% and the average particle size after milling was about 10 lim. The over all recoveries are over 95% for cobalt and lithium. The pilot test of mechanical separation was carried out for the recovery of cobalt from the scraps. The $Co_3O_4$ powder was made by the heat treatment of $Co(OH)_2$ and the average particle size was about 10 ${\mu}m$ after grinding. The recovery was over 99% for cobalt and lithium each other and the purity of cobalt oxide was over 99.98%.

Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions (코발트와 니켈 금속혼합물로부터 무기산 및 유기산에 의한 침출)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.53-60
    • /
    • 2021
  • Leaching experiments from single metal and metallic mixtures were conducted to develop a process for the recovery of cobalt, copper, and nickel in spent lithium ion batteries. Inorganic and organic acid solutions without oxidizing agents were employed. No copper was dissolved in the absence of an oxidizing agent in the leaching solutions. The leaching condition to completely dissolve single metal of cobalt and nickel was determined based on acid concentration, reaction temperature and time, and pulp density. The leaching condition to dissolve all of cobalt and nickel from the metallic mixtures was also obtained. Leaching of the metallic mixture with methanesulfonic acid led to selective dissolution of cobalt at low temperatures.