• Title/Summary/Keyword: 코리올리 효과

Search Result 15, Processing Time 0.021 seconds

A Self-Oscillation Type SAW Microgyroscope Based on the Coriolis Effect of Progressive Waves (진행파의 코리올리효과를 이용한 자가발진형 표면탄성파 초소형 자이로스코프)

  • Oh, Hae-Kwan;Choi, Ki-Sun;Lee, Hyung-Keun;Lee, Kee-Keun;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.390-396
    • /
    • 2010
  • An 80MHz surface acoustic wave (SAW)-based gyroscope utilizing a progressive wave was developed on a piezoelectric substrate. The developed sensor consists of two SAW oscillators in which one is used for sensing element and has metallic dots in the cavity between input and output IDTs. The other is used for a reference element. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. According to the simulation results, the device was fabricated and then measured on a rate table. When the device was subjected to an angular rotation, oscillation frequency differences between the two oscillators were observed because of the Coriolis force acting on the metallic dots. Depending on the angular rate, the difference of the oscillation frequency was modulated. The obtained sensitivity was approximately 52.35 Hz/deg.s within the angular rate range of 0~1000 deg/s. The performances of devices with three IDT structures for two kinds of piezoelectric substrates were characterized. Good thermal stability was also observed during the evaluation process.

Design of a Troidal Type Gyro using Repulsive Power of Permanent Magnet and Coriolis Effect (영구자석의 반발력과 코리올리 효과를 이용한 트로이덜 형 자이로의 설계)

  • Shin, Hye-Ung;Jou, Sung Tak;Lee, Kyo-Beum;Han, Man Yop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.694-700
    • /
    • 2015
  • This paper deals with the design of 1-kW troidal type gyro. In general, gyro can be used as magnet bearing or flywheel energy storage device. The proposed troidal type gyro is used as a flywheel energy storage device. The gyro is capable of high-speed rotation in the air. The coriolis effect is taken into account when designing the rotor of the proposed gyro. Also the repulsive power of the permanent magnet is considered while selecting the shape and the thickness of the magnet. The neodymium is used as material of the magnets in this paper. The number of magnets are selected accordingly to reduce these torque ripples because torque ripples is an important factor while designing the gyro. The designed troidal type gyro is verified through the Finite Element Method (FEM).

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

Development of Virtual Science Experience Space(VSES) using Haptic Device (역감 제시 장치를 이용한 가상 과학 체험 공간 개발)

  • 김호정;류제하
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1044-1053
    • /
    • 2003
  • A virtual science experience space(VSES) using virtual reality technology including haptic device is proposed to overcome limits which the existing science education has and to improve the effect of it. Four example scientific worlds such as Micro World, Friction World, Electromechanical World and Macro World are demonstrated by the developed VSES. Van der Waals forces in Micro World and Stick-Slip friction in Friction World, the principle of induction motor and power generator in Electromechanical World and Coriolis acceleration that is brought about by relative motion on the rotating coordinate are modeled mathematically based on physical principles. Emulation methods for haptic interface are suggested. The proposed VSES consists of haptic device, HMD or Crystal Eyes and a digital computer with stereoscopic graphics and GUI. The proposed system is believed to increase the realism and immersion for user.

Development of a Dual Axial Gyroscope with Piezoelectric Ceramics (압전세라믹을 이용한 2축형 회전센서 개발)

  • Ryoo, Hye-Ok;Lee, Young-Jin;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.61-67
    • /
    • 1997
  • Piezoelectric gyroscopes are the devices to measure angular rotational velocity of a system with respect to an inertial frame of reference means of the Coriolis principle. Most of current piezoelectric gyroscopes detect rotational velocity about a single axis of rotation. This paper describes development of a new dual axial gyroscope made out of the piezoelectric ceramic, PZT, which can overcome the limitation of the current single axial type. The validity of the new structure is checked through finite element analysis. Based on the design, an experimental sample of the sensor is fabricated and its performance is discussed in comparison with the theoretical expectation. The resutls show that the present gyroscope is capable of measuring the rotational velocity over two orthogonal axes simultaneously with good enough sensitivity and distinction between the two axial components of the rotation.

  • PDF