The Knowledge service system needs to infer a new knowledge from indicated knowledge to provide its effective service. Most of the Knowledge service system is expressed in terms of ontology. The volume of knowledge information in a real world is getting massive, so effective technique for massive data of ontology is drawing attention. This paper is to provide the method to infer massive data-ontology to the extent of RDFS, based on cloud computing environment, and evaluate its capability. RDFS inference suggested in this paper is focused on both the method applying MapReduce based on RDFS meta table, and the method of single use of cloud computing memory without using MapReduce under distributed file computing environment. Therefore, this paper explains basically the inference system structure of each technique, the meta table set-up according to RDFS inference rule, and the algorithm of inference strategy. In order to evaluate suggested method in this paper, we perform experiment with LUBM set which is formal data to evaluate ontology inference and search speed. In case LUBM6000, the RDFS inference technique based on meta table had required 13.75 minutes(inferring 1,042 triples per second) to conduct total inference, whereas the method applying the cloud computing memory had needed 7.24 minutes(inferring 1,979 triples per second) showing its speed twice faster.
Proceedings of the Korea Society for Industrial Systems Conference
/
2003.11a
/
pp.333-351
/
2003
90년대 말부터 새로운 지식정보국가의 패러다임으로 세계 각국은 ‘모바일, 브로드밴드, 극소형 컴퓨터, IPv6’의 기술이 창출해내는 컴퓨팅의 실체를 유비쿼터스 컴퓨팅으로 파악하고 각 국의 정부, 기업, 연구소들이 주도권을 잡기 위해 많은 노력을 기울이고 있다. 과거 30여년 동안 국내 기간 시설로 잘 구축된 유. 무선 통신환경은 유비쿼터스 정보통신이 바로 미래의 국가적 운영을 결정 짓는 초석이 될 것이다. 그러나, 유비쿼터스시대의 구현은 기술적인 발전으로 완성되는 것이 아닌 기초, 기반, 요소, 응용 서비스들이 효율적인 구축이 되어야 가능하다. 현째 까지는 IT 기술의 발전에 관한 연구들은 많이 진행되었지만, 시장의 수용과 관련된 사업적 상용화에 대한 연구들은 다소 부족한 것이 현실이다. 본 연구는 유비쿼터스 컴퓨팅 기술 기반과 서비스 IT 기술 개발 분류와는 구별되는 마케팅 /고객 관점에서의 유비쿼터스 컴퓨팅 환경의 재 분류를 시도하였다. 즉, 유비쿼터스 네크워킹 환경에서의 마케팅 환경변화의 단계를 설정하였고, 그에 대한 가상 시나리오 및 예측을 제안했다. 또한, 이렇게 분류한 유비쿼터스 환경이 소비자의 구매의사결정단계 (구매 전, 정보수집, 대안평가, 구매결정, 구매 후 행동)에 어떻게 영향을 미치고있는지에 대한 분석과 사례를 제시하였다. 특히 유비쿼터스 환경이 구매의사결정단계에서 각 단계의 축소/압축의 형태에 대해서 집중 조명하였다. 이를 토대로 유비쿼터스 환경에서 기업의 마케팅 및 고객관리의 변화와 대응에 대해 제언하였다.
Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.
Journal of The Korean Association of Information Education
/
v.22
no.2
/
pp.195-203
/
2018
This thesis is to presented a theoretical fundamental of an assessment criteria available to a conventional curriculum because informatics subject matter education became it. We analyzed Bloom's Knowledge Dimension, Taxonomy that have suggested most general theoretical base in the educational assessment area. Also a programming area which can improve computational thinking can be the most important chapter of the informatics subject matter. Thus this thesis applied Bloom's theory to KAIE's informatics subject matter curriculum made by 2017. And the result of the qualitative research through the expert panel was 14 items, 87% of Conceptual, Procedural Knowledge and 12 items, 75% of Understand, Apply Taxonomy of Bloom's Theories in the 16 items of the curriculum outlines. Applying Bloom Criteria to like these can provide theoretical fundamental of assessment trend, development of assessment tool requested in the conventional education.
In this study, the model of Turtle Ship, which is evaluated as one of the world's first ironclad ship in battle as well as the traditional scientific and technological heritage in Korea, was combined with the Physical Computing Platform(Arduino and App Inventor) that enables students to learn the basic concepts of IT in an easy and fun way. Thus, this study contrived the Physical Computing Platform-based Turtle Ship model which will make the students of Industrial Specialized High School develop the technological literacy and humanities-based knowledge through flexible education out of stereotype and single subject as well as enhance the potential of creative convergence education. The following is a summary of the main results obtained through this study: First, Arduino-based Main-controller design and making is helpful to learn of the hardware and software knowledge about EEC(Electron Electronics Control) and to confirm the basic characteristics and performance of interaction of Arduino and actuators. Second, The fundamental Instructional environments of abilities such as implementing EEC systems, thinking logically, and problem-solving skills were provided by designing of pattern diagram, designing an actuator circuit and making, the creation of sketches as technical programming and developing of mobile app. Thirdly, This is physical computing platform based Turtle ship model that will enable students to bring up their technological literacy and interest in the cultural heritage.
For last decade, the amount of information has been increased rapidly because of the internet and computing technology development, mobile devices and sensors, and social networks like facebook or twitter. People who want to gain important knowledge from database have been frustrated with large database. Many studies for automatic knowledge extracting meaningful knowledge from large database have been fulfilled. In that sense, automatic knowledge extracting with computing technology has been highly significant in information technology field, but still has many challenges to go further. In order to improve the effectives and efficiency of knowledge extracting system, test collection is strongly necessary. In this research, we introduce a test collection for automatic knwoledge extracting. We name the test collection KEEC/KREC(KISTI Entity Extraction Collection/KISTI Relation Extraction Collection) and present the process and guideline for building as well as the features of. The main feature is to tag by experts to guarantee the quality of collection. The experts read documents and tag entities and relation between entities with a tool for tagging. KEEC/KREC is being used for a research to evaluate system performance and will continue to contribute to next researches.
In this paper, we propose heterogeneous lifelog mining model in health big-data platform. It is an ontology-based mining model for collecting user's lifelog in real-time and providing healthcare services. The proposed method distributes heterogeneous lifelog data and processes it in real time in a cloud computing environment. The knowledge base is reconstructed by an upper ontology method suitable for the environment constructed based on the heterogeneous ontology. The restructured knowledge base generates inference rules using Jena 4.0 inference engines, and provides real-time healthcare services by rule-based inference methods. Lifelog mining constructs an analysis of hidden relationships and a predictive model for time-series bio-signal. This enables real-time healthcare services that realize preventive health services to detect changes in the users' bio-signal by exploring negative or positive correlations that are not included in the relationships or inference rules. The performance evaluation shows that the proposed heterogeneous lifelog mining model method is superior to other models with an accuracy of 0.734, a precision of 0.752.
In cloud robotics, the model to share information efficiently is still a research challenge. This paper presents an information sharing model for cloud-enabled robots to collaborate and share intelligence. To provide the efficient message dissemination, an adaptive group communication based on multi-agent is proposed. The proposed algorithm uses a weight function for the link nodes to determine the significant links. The performance evaluation showed that the proposed algorithm produced minimal message overhead and was faster to answer queries because of the significant links compared to traditional group communication methods.
Along with the advent of ubiquitous computing environment, it is becoming a part of our common life style that the demands for enjoying the wireless internet using intelligent portable device such as smart phone and iPad, are increasing anytime or anyplace without any restriction of time and place. The recommending service becomes a very important technology which can find exact information to present users, then is easy for customers to reduce their searching effort to find out the items with high purchasability in e-commerce. Traditional mining association rule ignores the difference among the transactions. In order to do that, it is considered the importance of type of merchandise or service and then, we suggest a new recommending service using mining sequential pattern based on weight to reflect frequently changing trends of purchase pattern as time goes by and as often as customers need different merchandises on e-commerce being extremely diverse. To verify improved better performance of proposing system than the previous systems, we carry out the experiments in the same dataset collected in a cosmetic internet shopping mall.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.954-957
/
2015
본 연구는 컴퓨터시스템을 이용한 맞춤형 정음기반 한국어 학습 지원시스템의 효율적인 모델에 관한 연구 논문으로서, IMS/AICC 국제규격을 준수하는 LCMS와 SCORM 기반의 정음 정보처리로 한국어 교육이 가능한 학습지원시스템에 구축 시스템의 세부 모음들을 정의하였다. 주 내용은 학습자의 학습결과와 학습 습관을 분석 평가하여 자가 주도 식으로 학습할 수 있는 기능을 제공한 것이다. 본 연구는 효율적인 PMS 세부모듈 시스템은 물론, 표준 역량모델관리시스템, 학습자 개별 역량 관리시스템, 역량저장 및 저장소, 커뮤니티를 활용한 역량 모델기반의 지식관리시스템, 교육 수요분석용 e-Survey시스템, 모바일 학습지원서비스 시스템 등이다. 앞으로 클라우드컴퓨팅 기술을 적용한 외국인을 위한 정음기반 한국어 학습지원시스템 구축 표준 모델을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.