• Title/Summary/Keyword: 컴퓨터 시스템

Search Result 15,119, Processing Time 0.037 seconds

The variability of 6-D Skull Tracking(6DST) in Cyberknife for Bone metastasis patients (사이버나이프 6-D Skull Tracking의 유용성 평가)

  • Lee, Geon Ho;Bae, Sun Myeong;Song, Heung Kwon;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.41-47
    • /
    • 2018
  • Purpose : The purpose of this study is to evaluate the usefulness of 6 Dimensional Skull Tracking(6DST) in Cyberknife Stereotactic Body Radiation Therapy(SBRT) for the first and second cervical vertebrae(C1 and C2) metastasis. Methode and material : The Computed Tomography (Lightspeed VCT 64, General Electric Co. Waukesha, WI, USA) was used to acquire the CT images of the 9 patients with cervical vertebrae(C1 and C2) metastasis. Treatment plans for Xsight spine tracking and 6 Dimensional skull tracking were established with planning system (Multiplan system Version 4.6, Accuray, US). The results of XST and 6DST for each patient were analyzed with Microsoft Excel 2010. Result : The Maximum offsets of XST for C1 were 0.9 mm in Y(supero-inferior), 0.9 mm in Z(antero-posterior), 0.7 mm in X(left-right) direction, and rotations were and 1.0 degrees roll, 1.0 degrees pitch and 1.2 degrees yaw. The Maximum offsets of 6DST for C1 were 0.7 mm, 0.7 mm, 0.9 mm and 1.01.0, 1.0, 1.2 for Y, Z, X and Roll, Pitch, Yaw. The Maximum offsets of XST and 6DST for C2 were 0.7 mm, 0.7 mm, 0.8 mm and 0.9, 1.0, 1.8, and 0.9 mm, 0.7 mm, 0.9 mm and 0.9, 0.9, 1.0 for Y, Z, X and Roll, Pitch, Yaw, respectively. Conclusion : XST and 6DST showed identical results for translations and rotations within the tolerance. It is possible to simplify the treatment time and procedure by using the 6DST. Therefore, 6DST is very useful methode with XST among the various tracking methods in Cyberknife for the patients with C1, C2 vertebral metastasis.

  • PDF

Methods of Incorporating Design for Production Considerations into Concept Design Investigations (개념설계 단계에서 총 건조비를 최소로 하는 생산지향적 설계 적용 방법)

  • H.S.,Bong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.131-136
    • /
    • 1990
  • 여러해 전부터 선박의 생산실적이나 생산성 관련 자료를 기록하고 보완하는 작업을 꾸준히 개선토록 노력해온 결과중 중요한 것 하나는, 선박의 여러 가지 설계 검토과정에서 충분히 활용할 수 있는 함축성 있고 믿을만한 형태의 생산정보를 제공해줄 수 있게 되었다는 것이라고 말 할 수 있겠다. 이러한 자료들은 생산계획상 각 단계(stage)에서의 작업량, 예상재료비와 인건비의 산출등이 포함될 수 있으며, 선박이나 해상구조물의 전반적인 설계방법론(design methodology)을 개선코자 한다면 ''생산지향적 설계(Design for Production)''의 근간이 되는 선박건조전략(build strategy), 구매정책(purchasing policy)과 생산기술(production technology)에 대한 폭넓은 지식이 한데 어우러져야 한다. 최근에는 CIMS의 일부분에서 보는 바와 같은 경영관리, 설계 및 생산지원 시스템의 도입으로 이와 같은 설계 프로세스의 추진을 가능케하고 있다. 이와 병행하여 설계를 지원하기 위한 전산기술, 특히 대화형 화상처리기술(interactive graphics)의 발달은 설계자가 선박의 형상이나 구조 배치를 여러 가지로 변화시켜 가면서 눈으로 즉시 확인할 수 있도록 설계자의 능력을 배가시키는데 크게 기여하고 있다. 여러 가지의 설계안(alternative design arrangement)을 신속히 만들어내고 이를 즉시 검토 평가할 수 있는 능력을 초기설계 단계에서 가질 수 있다면 이는 분명히 큰 장점일 것이며, 더구나 설계초기 단계에 생산관련인자를 설계에서 고려할 수 있다면 이는 더욱 두드러진 발전일 것이다. 생산공법과 관련생산 비용을 정확히 반영한 각 가지의 설계안을 짧은 시간내에 검토하고 생산소요 비용을 산출하여 비교함으로써, 수주계약단계에서 실제적인 생산공법과 신뢰성있는 생산실적자료를 기준으로 하여 총 건조비(total production cost)를 최소로 하는 최적의 설계를 선택할 수 있도록 해 줄 것이다. 이제 이와 같은 새로운 설계도구(design tool)를 제공해 주므로써 초기설계에 각종 생산관련 정보나 지식 및 실적자료가 반영가능토록 발전되었다. 본 논문은 영국의 뉴카슬대학교(Univ. of Newcastle upon Type)에서 위에 언급한 특징들을 반영하여 새로운 선박구조 설계 방법을 개발한 연구결과를 보여주고 있다. 본 선계연구는 5단계로 구분되는데; (1) 컴퓨터 그라픽스를 이용하고 생산정보 데이타베이스와 연결시켜 구조형상(geometry)을 정의하고 구조부재 칫수(scantling) 계산/결정 (2) 블럭 분할(block division) 및 강재 배치(panel arrangement)의 확정을 위해 생산기술 및 건조방식에 대한 정보 제공 (3) 상기 (1) 및 (2)를 활용하여 아래 각 생산 단계에서의 생산작업 분석(work content assessment) a) 생산 준비 단계(Preparation) b) 가공 조립 단계(Fabrication/Assembly) c) 탑재 단계(Erection) (4) 각각의 설계(안)에 대하여 재료비(material cost), 인건비(labour cost) 및 오버헤드 비용(overhead cost)을 산출키 위한 조선소의 생산시설 및 각종 품셈 정보 (5) 총 건조 비용(total production cost)을 산출하여 각각의 설계안을 비교 검토. 본 설계 방식을 산적화물선(Bulk Carrier) 설계에 적용하여 구조배치(structural geometry), 표준화의 정도(levels of standardisation), 구조생산공법(structural topology) 등의 변화에 따른 설계 결과의 민감도를 분석(sensitivity studies)하였다. 전산장비는 설계자의 대화형 접근을 용이하도록 하기 위해 VAX의 화상 처리장치를 이용하여 각 설계안에 대한 구조형상과 작업분석, 건조비 현황 등을 제시할 수 있도록 하였다. 결론적으로 본 연구는 설계초기 단계에서 상세한 건조비 모델(detailed production cost model)을 대화형 화상 처리방법에 접합시켜 이를 이용하여 여러가지 설계안의 도출과 비교검토를 신속히 처리할 수 있도록 함은 물론, 각종 생산 실적정보를 초기설계에 반영하는 최초의 시도라고 믿으며, 생산지향적(Design for Production) 최적설계분야의 발전에 많은 도움이 되기를 기대해 마지 않는다. 참고로 본 시스템의 설계 적용결과를 부록에 요약 소개하며, 상세한 내용은 참고문헌 [4] 또는 [7]을 참조 요망한다.

  • PDF

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

Economic Impact of HEMOS-Cloud Services for M&S Support (M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과)

  • Jung, Dae Yong;Seo, Dong Woo;Hwang, Jae Soon;Park, Sung Uk;Kim, Myung Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.261-268
    • /
    • 2021
  • Cloud computing is a computing paradigm in which users can utilize computing resources in a pay-as-you-go manner. In a cloud system, resources can be dynamically scaled up and down to the user's on-demand so that the total cost of ownership can be reduced. The Modeling and Simulation (M&S) technology is a renowned simulation-based method to obtain engineering analysis and results through CAE software without actual experimental action. In general, M&S technology is utilized in Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization fields. The work procedure through M&S is divided into pre-processing, analysis, and post-processing steps. The pre/post-processing are GPU-intensive job that consists of 3D modeling jobs via CAE software, whereas analysis is CPU or GPU intensive. Because a general-purpose desktop needs plenty of time to analyze complicated 3D models, CAE software requires a high-end CPU and GPU-based workstation that can work fluently. In other words, for executing M&S, it is absolutely required to utilize high-performance computing resources. To mitigate the cost issue from equipping such tremendous computing resources, we propose HEMOS-Cloud service, an integrated cloud and cluster computing environment. The HEMOS-Cloud service provides CAE software and computing resources to users who want to experience M&S in business sectors or academics. In this paper, the economic ripple effect of HEMOS-Cloud service was analyzed by using industry-related analysis. The estimated results of using the experts-guided coefficients are the production inducement effect of KRW 7.4 billion, the value-added effect of KRW 4.1 billion, and the employment-inducing effect of 50 persons per KRW 1 billion.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.

Project of Improving Good Agriculture Practice and Income by Intergrated Agricultural Farming (미얀마 우수농산물 재배기술 전수사업)

  • Lee, Young-Cheul;Choi, Dong-Yong
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.193-206
    • /
    • 2014
  • The objectives of the project are to increase farmers' income through GAP and to reduce the loss of agricultural produce, for which the Korean partner takes a role of transferring needed technologies to the project site. To accomplish the project plan, it is set to implement the project with six components: construction of buildings, installation of agricultural facilities, establishment of demonstration farms, dispatching experts, conducting training program in Korea and provision of equipments. The Project Management Committee and the Project Implementation Team are consisted of Korean experts and senior officials from Department of Agriculture, Myanmar that managed the project systematically to ensure the success of the project. The process of the project are; the ceremony of laying the foundation and commencing the construction of training center in April, 2012. The Ribbon Cutting Ceremony for the completion of GAP Training Center was successfully held under PMC (MOAI, GAPI/ARDC) arrangement in SAl, Naypyitaw on June 17, 2012. The Chairman of GAPI, Dr. Sang Mu Lee, Director General U Kyaw Win of DOA, officials and staff members from Korea and Myanmar, teachers and students from SAl attended the ceremony. The team carried out an inspection and fixing donors' plates on donated project machineries, agro-equipments, vehicles, computers and printer, furniture, tools and so forth. Demonstration farm for paddy rice, fruits and vegetables was laid out in April, 2012. Twenty nine Korean rice varieties and many Korean vegetable varieties were introduced into GAP Project farm to check the suitability of the varieties under Myanmar growing conditions. Paddy was cultivated three times in DAR and twice in SAl. In June 2012, vinyl houses were started to be constructed for raising seedlings and finished in December 2012. Fruit orchard for mango, longan and dragon fruit was established in June, 2012. Vegetables were grown until successful harvest and the harvested produce was used for panel testing and distribution in January 2013. Machineries for postharvest handling systems were imported in November 2012. Setting the washing line for vegetables were finished and the system as run for testing in June 2013. New water tanks, pine lines, pump house and electricity were set up in October 2013.

A Study on Metaverse Construction Based on 3D Spatial Information of Convergence Sensors using Unreal Engine 5 (언리얼 엔진 5를 활용한 융복합센서의 3D 공간정보기반 메타버스 구축 연구)

  • Oh, Seong-Jong;Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2022
  • Recently, the demand and development for non-face-to-face services are rapidly progressing due to the pandemic caused by the COVID-19, and attention is focused on the metaverse at the center. Entering the era of the 4th industrial revolution, Metaverse, which means a world beyond virtual and reality, combines various sensing technologies and 3D reconstruction technologies to provide various information and services to users easily and quickly. In particular, due to the miniaturization and economic increase of convergence sensors such as unmanned aerial vehicle(UAV) capable of high-resolution imaging and high-precision LiDAR(Light Detection and Ranging) sensors, research on digital-Twin is actively underway to create and simulate real-life twins. In addition, Game engines in the field of computer graphics are developing into metaverse engines by expanding strong 3D graphics reconstuction and simulation based on dynamic operations. This study constructed a mirror-world type metaverse that reflects real-world coordinate-based reality using Unreal Engine 5, a recently announced metaverse engine, with accurate 3D spatial information data of convergence sensors based on unmanned aerial system(UAS) and LiDAR. and then, spatial information contents and simulations for users were produced based on various public data to verify the accuracy of reconstruction, and through this, it was possible to confirm the construction of a more realistic and highly utilizable metaverse. In addition, when constructing a metaverse that users can intuitively and easily access through the unreal engine, various contents utilization and effectiveness could be confirmed through coordinate-based 3D spatial information with high reproducibility.

Development of an Eye Patch-Type Biosignal Measuring Device to Measure Sleep Quality (수면의 질을 측정하기 위한 안대형 생체신호 측정기기 개발)

  • Changsun Ahn;Jaekwan Lim;Bongsu Jung;Youngjoo Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.5
    • /
    • pp.171-180
    • /
    • 2023
  • The three major sleep disorders in Korea are snoring, sleep apnea, and insomnia. Lack of sleep is the root of all diseases. Some of the most serious potential problems associated with sleep deprivation are cardiovascular problems, cognitive impairment, obesity, diabetes, colitis, prostate cancer, etc. To solve these problems, the Korean government provided low-cost national health insurance benefits for polysomnography tests in July 2018. However, insomnia patients still have problems getting treated in terms of time, space, and economic perspectives. Therefore, it would be better for insomnia patients to be allowed to test at home. The measuring device can measure six biosignals (eye movement, tossing and turning, body temperature, oxygen saturation, heart rate, and audio). A gyroscope sensor (MPU9250, InvenSense, USA) was used for eye movement, tossing, and turning. The input range of the sensor was in 258°/sec to 460°/sec, and the data range was in the input range. Body temperature, oxygen saturation range, and heart rate were measured by a sensor (MAX30102, Analog Devices, USA). The body temperature was measured in 30 ℃ to 45 ℃, and the oxygen saturation range was 0% for the unused state and 20 % to 90 % for the used state. The heart rate measurement range was in 40 bpm to 180 bpm. The measurement of audio signal was performed by an audio sensor (AMM2742-T-R, PUIaudio, USA). The was -42 dB ±1 dB frequency range was 20 Hz to 20 kHz. The measured data was successfully received in wireless network conditions. The system configuration was consisted of a PC and a mobile app for bio-signal measurement and data collection. The measured data was collected by mobile phones and desktops. The data collected can be used as preliminary data to determine the stage of sleep and perform the screening function for sleep induction and sleep disturbances. In the future, this convenient sleep measurement device could be beneficial for treating insomnia.

A Study on the Implications of Korea Through the Policy Analysis of AI Start-up Companies in Major Countries (주요국 AI 창업기업 정책 분석을 통한 국내 시사점 연구)

  • Kim, Dong Jin;Lee, Seong Yeob
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.215-235
    • /
    • 2024
  • As artificial intelligence (AI) technology is recognized as a key technology that will determine future national competitiveness, competition for AI technology and industry promotion policies in major countries is intensifying. This study aims to present implications for domestic policy making by analyzing the policies of major countries on the start-up of AI companies, which are the basis of the AI industry ecosystem. The top four countries and the EU for the number of new investment attraction companies in the 2023 AI Index announced by the HAI Research Institute at Stanford University in the United States were selected, The United States enacted the National AI Initiative Act (NAIIA) in 2021. Through this law, The US Government is promoting continued leadership in the United States in AI R&D, developing reliable AI systems in the public and private sectors, building an AI system ecosystem across society, and strengthening DB management and access to AI policies conducted by all federal agencies. In the 14th Five-Year (2021-2025) Plan and 2035 Long-term Goals held in 2021, China has specified AI as the first of the seven strategic high-tech technologies, and is developing policies aimed at becoming the No. 1 AI global powerhouse by 2030. The UK is investing in innovative R&D companies through the 'Future Fund Breakthrough' in 2021, and is expanding related investments by preparing national strategies to leap forward as AI leaders, such as the implementation plan of the national AI strategy in 2022. Israel is supporting technology investment in start-up companies centered on the Innovation Agency, and the Innovation Agency is leading mid- to long-term investments of 2 to 15 years and regulatory reforms for new technologies. The EU is strengthening its digital innovation hub network and creating the InvestEU (European Strategic Investment Fund) and AI investment fund to support the use of AI by SMEs. This study aims to contribute to analyzing the policies of major foreign countries in making AI company start-up policies and providing a basis for Korea's strategy search. The limitations of the study are the limitations of the countries to be analyzed and the failure to attempt comparative analysis of the policy environments of the countries under the same conditions.

  • PDF

Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems (인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축)

  • Seung-seob Kim;Dong Ho Lee;Min Woo Lee;So Yeon Kim;Jaeseung Shin;Jin‑Young Choi;Byoung Wook Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1196-1206
    • /
    • 2021
  • Purpose To construct a standard dataset of contrast-enhanced CT images of liver tumors to test the performance and safety of artificial intelligence (AI)-based algorithms for clinical decision support systems (CDSSs). Materials and Methods A consensus group of medical experts in gastrointestinal radiology from four national tertiary institutions discussed the conditions to be included in a standard dataset. Seventy-five cases of hepatocellular carcinoma, 75 cases of metastasis, and 30-50 cases of benign lesions were retrieved from each institution, and the final dataset consisted of 300 cases of hepatocellular carcinoma, 300 cases of metastasis, and 183 cases of benign lesions. Only pathologically confirmed cases of hepatocellular carcinomas and metastases were enrolled. The medical experts retrieved the medical records of the patients and manually labeled the CT images. The CT images were saved as Digital Imaging and Communications in Medicine (DICOM) files. Results The medical experts in gastrointestinal radiology constructed the standard dataset of contrast-enhanced CT images for 783 cases of liver tumors. The performance and safety of the AI algorithm can be evaluated by calculating the sensitivity and specificity for detecting and characterizing the lesions. Conclusion The constructed standard dataset can be utilized for evaluating the machine-learning-based AI algorithm for CDSS.