• Title/Summary/Keyword: 컴퓨터 수치제어 공구 경로

Search Result 8, Processing Time 0.027 seconds

Constant Scallop Height Tool Paths and Geodesic Parallels (일정 스켈럽 높이 공구경로와 축지평행선의 관계)

  • Kim Tae-Jung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.127-128
    • /
    • 2006
  • We introduce a novel approach for generating constant scallop height tool paths. We derive a Riemannian metric tensor from curvature tensors of a part surface and a tool surface. Then, we construct geodesic parallels from the newly constructed metric. Those geodesic parallels constitute an asymptotically-correct family of constant scallop height tool paths.

  • PDF

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

A Study on Development of Interactive CAM System for CNC Lathe (CNC 선반용 대화형 CAM 시스템 개발에 관한 연구)

  • Kim, Hui Jung;Jeong, Jae Hyeon;Park, Myeong Gyu;Kim, Jong Su;Choe, Hyeong Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.83-83
    • /
    • 1996
  • Recently, for enhanced productivity the induction of CAD/CAM is vigorous. Most of high-level CAD/CAM systems produce powerful faculties. But it is very expensive to purchase the system in small and difficult to be operated by non-experienced workers effectively. Then the resonable CAM system for these is needed. In this study we developed a proto-type of the CAM system for CNC lathe connecting with personal computer. This system is configured with interactive menu windows for easy control of CNC lathe. And the system supports tool path generation for cutting conditions of workpiece. The performance of this system is satisfactory.

A Study on Development of Interactive CAM System for CNC Lathe (CNC 선반용 대화형 CAM 시스템 개발에 관한 연구)

  • 김희중;정재현;박명규;김종수;최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.15-23
    • /
    • 1996
  • Recently, for enhanced productivity the induction of CAD/CAM is vigorous. Most of high-level CAD/CAM systems produce powerful faculties. But it is very expensive to purchase the system in small and difficult to be operated by non-experienced workers effectively. Then the resonable CAM system for these is needed. In this study we developed a proto-type of the CAM system for CNC lathe connecting with personal computer. This system is configured with interactive menu windows for easy control of CNC lathe. And the system supports tool path generation for cutting conditions of workpiece. The performance of this system is satisfactory.

  • PDF

Intelligent NURBS Surface Interpolation System with Embedded Online Tool-Path Planning (온라인 방식의 공구경로 계획을 내장한 지능형 NURBS 곡면 보간 시스템)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.156-163
    • /
    • 2006
  • The purpose of this study is to improve the machining of free-formed NURBS surfaces using newly defined G-codes which can directly deal with shapes defined from CAD/CAM programs on a surface basis and specialize in rough and finish cut. To this purpose, a NURBS surface interpolation system is proposed in this paper. The proposed interpolation system includes online tool-path planning, real-time interpolation and feedrate regulation considering an effective machining method and minimum machining time all suitable for unit NURBS surface machining. The corresponding algorithms are simultaneously executed in an online manner. The proposed NURBS surface interpolation system is integrated and implemented with a PC-based 3-axis CNC milling system. A graphic user interface (GUI) and a 3D tool-path viewer which interprets the G-codes for NURBS surfaces and displays whole tool-paths are also developed and included in our real-time control system. The proposed system is evaluated through actual machining in terms of size of NC data, machining time, regulation of feedrate and cutting force focused on finish cut in comparison with the existing method.

Path Planning and Control of an Articulated Robot for Polishing Large Aspherical Surface (대구경 비구면 연마를 위한 다관절 로봇의 경로 계획 및 제어)

  • Kim, Ji-Su;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1387-1392
    • /
    • 2019
  • Aspherical mirrors have lighter weight and better performance than spherical mirrors, but it is difficult to process their shape and measure the processing precision. Especially, large aperture aspherical mirrors mounted on satellites need high processing precision and long processing time. The computerized numerically controlled machine of gantry type has been used in polishing process, but it has difficulties in processing the complex shapes due to the lack of degrees of freedom. In order to overcome this problem we developed a polishing system using an articulated industrial robot. The system consists of tool path generating program, real-time robot monitoring, and control program. We show the performance of the developed system through the computer simulation and actual robot operation.

Real-Time Tool-Path Generation for 3-Axis CNC Machining of NURBS Surfaces (NURBS 곡면의 3축 CNC 가공을 위한 실시간 공구경로 생성)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1418-1425
    • /
    • 2003
  • In CAD systems, a surface to be machined is expressed by a series of curves, such as B-spline, Bezier and NURBS curves, which compose the surface and then in CAM systems the curves are divided into a large number of line or arc segments. These divided movement commands, however, cause many problems including their excessive size of NC data that makes almost impossible local adjustment or modification of the surface. To cope with those problems, the necessity of real-time curve or surface interpolators was embossed. This paper presents an efficient real-time tool-path generation method fur interpolation of NURBS surfaces in CNC machining. The proposed tool-path generation method is based on an improved iso-scallop strategy and can provide better precision than the existing methods. The proposed method is designed such that tool-path planning is easily managed in real-time. It proposed a new algorithm for regulation of a scallop height, which can efficiently generate tool-paths and can save machining time compared with the existing method. Through computer simulations, the performance of the proposed method is analyzed and compared with the existing method in terms of federate, total machining time and a degree of constraint on the scallop height.

Intelligent NURBS Surface Interpolator with Online Tool-Path Planning (온라인 방식의 지능형 NURBS 곡면 보간기)

  • 구태훈;지성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.471-474
    • /
    • 2004
  • In this paper, a NURBS surface interpolator is proposed which can deal with shapes defined from CAD/CAM programs on a surface basis and can improve contour accuracy. The proposed interpolator is based on newly defined G-codes and includes online tool-path planning suitable for NURBS surface machining. The real-time interpolation algorithm, considering an effective machining method for each machining process and minimum machining time, is executed in an online manner. The proposed interpolator is implemented on a PC-based 3-axis CNC milling system and evaluated through actual machining in terms of machining time and regulation of feedrate and cutting force in comparison with the existing method.

  • PDF