• Title/Summary/Keyword: 컴퓨터통신

Search Result 10,138, Processing Time 0.038 seconds

Approaches to Applying Social Network Analysis to the Army's Information Sharing System: A Case Study (육군 정보공유체계에 사회관계망 분석을 적용하기 위한방안: 사례 연구)

  • GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.597-603
    • /
    • 2023
  • The paradigm of military operations has evolved from platform-centric warfare to network-centric warfare and further to information-centric warfare, driven by advancements in information technology. In recent years, with the development of cutting-edge technologies such as big data, artificial intelligence, and the Internet of Things (IoT), military operations are transitioning towards knowledge-centric warfare (KCW), based on artificial intelligence. Consequently, the military places significant emphasis on integrating advanced information and communication technologies (ICT) to establish reliable C4I (Command, Control, Communication, Computer, Intelligence) systems. This research emphasizes the need to apply data mining techniques to analyze and evaluate various aspects of C4I systems, including enhancing combat capabilities, optimizing utilization in network-based environments, efficiently distributing information flow, facilitating smooth communication, and effectively implementing knowledge sharing. Data mining serves as a fundamental technology in modern big data analysis, and this study utilizes it to analyze real-world cases and propose practical strategies to maximize the efficiency of military command and control systems. The research outcomes are expected to provide valuable insights into the performance of C4I systems and reinforce knowledge-centric warfare in contemporary military operations.

Efficient Stack Smashing Attack Detection Method Using DSLR (DSLR을 이용한 효율적인 스택스매싱 공격탐지 방법)

  • Do Yeong Hwang;Dong-Young Yoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.9
    • /
    • pp.283-290
    • /
    • 2023
  • With the recent steady development of IoT technology, it is widely used in medical systems and smart TV watches. 66% of software development is developed through language C, which is vulnerable to memory attacks, and acts as a threat to IoT devices using language C. A stack-smashing overflow attack inserts a value larger than the user-defined buffer size, overwriting the area where the return address is stored, preventing the program from operating normally. IoT devices with low memory capacity are vulnerable to stack smashing overflow attacks. In addition, if the existing vaccine program is applied as it is, the IoT device will not operate normally. In order to defend against stack smashing overflow attacks on IoT devices, we used canaries among several detection methods to set conditions with random values, checksum, and DSLR (random storage locations), respectively. Two canaries were placed within the buffer, one in front of the return address, which is the end of the buffer, and the other was stored in a random location in-buffer. This makes it difficult for an attacker to guess the location of a canary stored in a fixed location by storing the canary in a random location because it is easy for an attacker to predict its location. After executing the detection program, after a stack smashing overflow attack occurs, if each condition is satisfied, the program is terminated. The set conditions were combined to create a number of eight cases and tested. Through this, it was found that it is more efficient to use a detection method using DSLR than a detection method using multiple conditions for IoT devices.

Modified AWSSDR method for frequency-dependent reverberation time estimation (주파수 대역별 잔향시간 추정을 위한 변형된 AWSSDR 방식)

  • Min Sik Kim;Hyung Soon Kim
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.91-100
    • /
    • 2023
  • Reverberation time (T60) is a typical acoustic parameter that provides information about reverberation. Since the impacts of reverberation vary depending on the frequency bands even in the same space, frequency-dependent (FD) T60, which offers detailed insights into the acoustic environments, can be useful. However, most conventional blind T60 estimation methods, which estimate the T60 from speech signals, focus on fullband T60 estimation, and a few blind FDT60 estimation methods commonly show poor performance in the low-frequency bands. This paper introduces a modified approach based on Attentive pooling based Weighted Sum of Spectral Decay Rates (AWSSDR), previously proposed for blind T60 estimation, by extending its target from fullband T60 to FDT60. The experimental results show that the proposed method outperforms conventional blind FDT60 estimation methods on the acoustic characterization of environments (ACE) challenge evaluation dataset. Notably, it consistently exhibits excellent estimation performance in all frequency bands. This demonstrates that the mechanism of the AWSSDR method is valuable for blind FDT60 estimation because it reflects the FD variations in the impact of reverberation, aggregating information about FDT60 from the speech signal by processing the spectral decay rates associated with the physical properties of reverberation in each frequency band.

Psychological and Pedagogical Features the Use of Digital Technology in a Blended Learning Environment

  • Volkova Nataliia;Poyasok Tamara;Symonenko Svitlana;Yermak Yuliia;Varina Hanna;Rackovych Anna
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.127-134
    • /
    • 2024
  • The article highlights the problems of the digitalization of the educational process, which affect the pedagogical cluster and are of a psychological nature. The authors investigate the transformational changes in education in general and the individual beliefs of each subject of the educational process, caused by both the change in the format of learning (distance, mixed), and the use of new technologies (digital, communication). The purpose of the article is to identify the strategic trend of the educational process, which is a synergistic combination of pedagogical methodology and psychological practice and avoiding dialectical opposition of these components of the educational space. At the same time, it should be noted that the introduction of digital technologies in the educational process allows for short-term difficulties, which is a usual phenomenon for innovations in the educational sphere. Consequently, there is a need to differentiate the fundamental problems and temporary shortcomings that are inherent in the new format of learning (pedagogical features). Based on the awareness of this classification, it is necessary to develop psychological techniques that will prevent a negative reaction to the new models of learning and contribute to a painless moral and spiritual adaptation to the realities of the present (psychological characteristics). The methods used in the study are divided into two main groups: general-scientific, which investigates the pedagogical component (synergetic, analysis, structural and typological methods), and general-scientific, which are characterized by psychological direction (dialectics, observation, and comparative analysis). With the help of methods disclosed psychological and pedagogical features of the process of digitalization of education in a mixed learning environment. The result of the study is to develop and carry out methodological constants that will contribute to the synergy for the new pedagogical components (digital technology) and the psychological disposition to their proper use (awareness of the effectiveness of new technologies). So, the digitalization of education has demonstrated its relevance and effectiveness in the pedagogical dimension in the organization of blended and distance learning under the constraints of the COVID-19 pandemic. The task of the psychological cluster is to substantiate the positive aspects of the digitalization of the educational process.

Development of a Real-time Action Recognition-Based Child Behavior Analysis Service System (실시간 행동인식 기반 아동 행동분석 서비스 시스템 개발)

  • Chimin Oh;Seonwoo Kim;Jeongmin Park;Injang Jo;Jaein Kim;Chilwoo Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.68-84
    • /
    • 2024
  • This paper describes the development of a system and algorithms for high-quality welfare services by recognizing behavior development indicators (activity, sociability, danger) in children aged 0 to 2 years old using action recognition technology. Action recognition targeted 11 behaviors from lying down in 0-year-olds to jumping in 2-year-olds, using data directly obtained from actual videos provided for research purposes by three nurseries in the Gwangju and Jeonnam regions. A dataset of 1,867 actions from 425 clip videos was built for these 11 behaviors, achieving an average recognition accuracy of 97.4%. Additionally, for real-world application, the Edge Video Analyzer (EVA), a behavior analysis device, was developed and implemented with a region-specific random frame selection-based PoseC3D algorithm, capable of recognizing actions in real-time for up to 30 people in four-channel videos. The developed system was installed in three nurseries, tested by ten childcare teachers over a month, and evaluated through surveys, resulting in a perceived accuracy of 91 points and a service satisfaction score of 94 points.

A DB Pruning Method in a Large Corpus-Based TTS with Multiple Candidate Speech Segments (대용량 복수후보 TTS 방식에서 합성용 DB의 감량 방법)

  • Lee, Jung-Chul;Kang, Tae-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.572-577
    • /
    • 2009
  • Large corpus-based concatenating Text-to-Speech (TTS) systems can generate natural synthetic speech without additional signal processing. To prune the redundant speech segments in a large speech segment DB, we can utilize a decision-tree based triphone clustering algorithm widely used in speech recognition area. But, the conventional methods have problems in representing the acoustic transitional characteristics of the phones and in applying context questions with hierarchic priority. In this paper, we propose a new clustering algorithm to downsize the speech DB. Firstly, three 13th order MFCC vectors from first, medial, and final frame of a phone are combined into a 39 dimensional vector to represent the transitional characteristics of a phone. And then the hierarchically grouped three question sets are used to construct the triphone trees. For the performance test, we used DTW algorithm to calculate the acoustic similarity between the target triphone and the triphone from the tree search result. Experimental results show that the proposed method can reduce the size of speech DB by 23% and select better phones with higher acoustic similarity. Therefore the proposed method can be applied to make a small sized TTS.

Noise-Biased Compensation of Minimum Statistics Method using a Nonlinear Function and A Priori Speech Absence Probability for Speech Enhancement (음질향상을 위해 비선형 함수와 사전 음성부재확률을 이용한 최소통계법의 잡음전력편의 보상방법)

  • Lee, Soo-Jeong;Lee, Gang-Seong;Kim, Sun-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.77-83
    • /
    • 2009
  • This paper proposes a new noise-biased compensation of minimum statistics(MS) method using a nonlinear function and a priori speech absence probability(SAP) for speech enhancement in non-stationary noisy environments. The minimum statistics(MS) method is well known technique for noise power estimation in non-stationary noisy environments. It tends to bias the noise estimate below that of true noise level. The proposed method is combined with an adaptive parameter based on a sigmoid function and a priori speech absence probability (SAP) for biased compensation. Specifically. we apply the adaptive parameter according to the a posteriori SNR. In addition, when the a priori SAP equals unity, the adaptive biased compensation factor separately increases ${\delta}_{max}$ each frequency bin, and vice versa. We evaluate the estimation of noise power capability in highly non-stationary and various noise environments, the improvement in the segmental signal-to-noise ratio (SNR), and the Itakura-Saito Distortion Measure (ISDM) integrated into a spectral subtraction (SS). The results shows that our proposed method is superior to the conventional MS approach.

Innovative Teaching Technologies as a Way to Increase Students' Competitiveness

  • Olena M. Galynska;Nataliia V. Shkoliar;Zoriana I. Dziubata;Svitlana V. Kravets;Nataliia S. Levchyk
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.157-169
    • /
    • 2024
  • The article presents an analysis of innovative teaching technologies as a way to increase students' competitiveness. The author found that innovative technologies in education are information and communication technologies relying on computer-based learning. The structure, content of educational software, organization of Web-space are important when using innovative teaching technologies in English classes. We conducted the study in several stages: comparative analysis, synthesis, classification and systematization of the results of psychological and pedagogical, educational and methodological research; study of legislative acts, periodicals in order to identify the state of the research issue, and determining the directions of its solution, as well as subject, goal and objectives of the study. We used modelling to create situations of foreign language professional communication of future IT specialists. Empirical methods involved questionnaires used for identifying the motives of professional development and determining the features of the educational activities of future IT specialists in the process of training. The methods of mathematical statistics allowed to scientifically describe and systematize the obtained data, to identify the quantitative relationship between the studied phenomena, to analyse and summarize the results. We conducted a socio-psychological study during 2016 - 2019. It involved 255 first- and fourth-year students of National Technical University of Ukraine "Igor Sikorsky Kyiv Poly-technic Institute." Innovative information and communication technologies that improve the educational and cognitive activity of students, as well as increase the level of their knowledge have become important in teaching a foreign language in higher educational institutions. These technologies include MOODLE - Modular Object-Oriented Dynamic Learning Environment, business game, integrated pedagogical technology, case study technology. Thus, the information-rich learning process in combination with the use of innovative technologies, well-organized e-learning, interactive training courses, multimedia tools improves the program of teaching and learning foreign languages in general, and English in particular, improves the level of knowledge of future IT specialists and motivation to study and learn foreign languages, allows students to use a variety of authentic materials. We state that all these factors influence the process of individualization of learning and contribute to the successful mastery of a foreign language.

Hierarchy in Signed Networks

  • Jamal Maktoubian
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.111-118
    • /
    • 2024
  • The concept of social stratification and hierarchy among human dates back to the origin of human race. Presently, the growing reputation of social networks has given us with an opportunity to analyze these well-studied phenomena over different networks at different scales. Generally, a social network could be defined as a collection of actors and their interactions. In this work, we concern ourselves with a particular type of social networks, known as trust networks. In this type of networks, there is an explicit show of trust (positive interaction) or distrust (negative interaction) among the actors. In other words, an actor can designate others as friends or foes. Trust networks are typically modeled as signed networks. A signed network is a directed graph in which the edges carry an edge weight of +1 (indicating trust) or -1 (indicating distrust). Examples of signed networks include the Slashdot Zoo network, the Epinions network and the Wikipedia adminship election network. In a social network, actors tend to connect with each other on the basis of their perceived social hierarchy. The emergence of such a hierarchy within a social community shows the manner in which authority manifests in the community. In the case of signed networks, the concept of social hierarchy can be interpreted as the emergence of a tree-like structure comprising of actors in a top-down fashion in the order of their ranks, describing a specific parent-child relationship, viz. child trusts parent. However, owing to the presence of positive as well as negative interactions in signed networks, deriving such "trust hierarchies" is a non-trivial challenge. We argue that traditional notions (of unsigned networks) are insufficient to derive hierarchies that are latent within signed networks In order to build hierarchies in signed networks, we look at two interpretations of trust namely presence of trust (or "good") and lack of distrust (or "not bad"). In order to develop a hierarchy signifying both trust and distrust effectively, the above interpretations are combined together for calculating the overall trustworthiness (termed as deserve) of actors. The actors are then arranged in a hierarchical fashion based on these aggregate deserve values, according to the following hypothesis: actor v is assigned as a child of actor u if: (i) v trusts u, and (ii) u has a higher deserve value than v. We describe this hypothesis with additional qualifiers in this thesis.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.