• Title/Summary/Keyword: 컴퓨터통신

Search Result 10,138, Processing Time 0.112 seconds

Detecting Stress Based Social Network Interactions Using Machine Learning Techniques

  • S.Rajasekhar;K.Ishthaq Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.101-106
    • /
    • 2023
  • In this busy world actually stress is continuously grow up in research and monitoring social websites. The social interaction is a process by which people act and react in relation with each other like play, fight, dance we can find social interactions. In this we find social structure means maintain the relationships among peoples and group of peoples. Its a limit and depends on its behavior. Because relationships established on expectations of every one involve depending on social network. There is lot of difference between emotional pain and physical pain. When you feel stress on physical body we all feel with tensions, stress on physical consequences, physical effects on our health. When we work on social network websites, developments or any research related information retrieving etc. our brain is going into stress. Actually by social network interactions like watching movies, online shopping, online marketing, online business here we observe sentiment analysis of movie reviews and feedback of customers either positive/negative. In movies there we can observe peoples reaction with each other it depends on actions in film like fights, dances, dialogues, content. Here we can analysis of stress on brain different actions of movie reviews. All these movie review analysis and stress on brain can calculated by machine learning techniques. Actually in target oriented business, the persons who are working in marketing always their brain in stress condition their emotional conditions are different at different times. In this paper how does brain deal with stress management. In software industries when developers are work at home, connected with clients in online work they gone under stress. And their emotional levels and stress levels always changes regarding work communication. In this paper we represent emotional intelligence with stress based analysis using machine learning techniques in social networks. It is ability of the person to be aware on your own emotions or feeling as well as feelings or emotions of the others use this awareness to manage self and your relationships. social interactions is not only about you its about every one can interacting and their expectations too. It about maintaining performance. Performance is sociological understanding how people can interact and a key to know analysis of social interactions. It is always to maintain successful interactions and inline expectations. That is to satisfy the audience. So people careful to control all of these and maintain impression management.

Hate Speech Detection Using Modified Principal Component Analysis and Enhanced Convolution Neural Network on Twitter Dataset

  • Majed, Alowaidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2023
  • Traditionally used for networking computers and communications, the Internet has been evolving from the beginning. Internet is the backbone for many things on the web including social media. The concept of social networking which started in the early 1990s has also been growing with the internet. Social Networking Sites (SNSs) sprung and stayed back to an important element of internet usage mainly due to the services or provisions they allow on the web. Twitter and Facebook have become the primary means by which most individuals keep in touch with others and carry on substantive conversations. These sites allow the posting of photos, videos and support audio and video storage on the sites which can be shared amongst users. Although an attractive option, these provisions have also culminated in issues for these sites like posting offensive material. Though not always, users of SNSs have their share in promoting hate by their words or speeches which is difficult to be curtailed after being uploaded in the media. Hence, this article outlines a process for extracting user reviews from the Twitter corpus in order to identify instances of hate speech. Through the use of MPCA (Modified Principal Component Analysis) and ECNN, we are able to identify instances of hate speech in the text (Enhanced Convolutional Neural Network). With the use of NLP, a fully autonomous system for assessing syntax and meaning can be established (NLP). There is a strong emphasis on pre-processing, feature extraction, and classification. Cleansing the text by removing extra spaces, punctuation, and stop words is what normalization is all about. In the process of extracting features, these features that have already been processed are used. During the feature extraction process, the MPCA algorithm is used. It takes a set of related features and pulls out the ones that tell us the most about the dataset we give itThe proposed categorization method is then put forth as a means of detecting instances of hate speech or abusive language. It is argued that ECNN is superior to other methods for identifying hateful content online. It can take in massive amounts of data and quickly return accurate results, especially for larger datasets. As a result, the proposed MPCA+ECNN algorithm improves not only the F-measure values, but also the accuracy, precision, and recall.

Comparison of Adversarial Example Restoration Performance of VQ-VAE Model with or without Image Segmentation (이미지 분할 여부에 따른 VQ-VAE 모델의 적대적 예제 복원 성능 비교)

  • Tae-Wook Kim;Seung-Min Hyun;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.194-199
    • /
    • 2022
  • Preprocessing for high-quality data is required for high accuracy and usability in various and complex image data-based industries. However, when a contaminated hostile example that combines noise with existing image or video data is introduced, which can pose a great risk to the company, it is necessary to restore the previous damage to ensure the company's reliability, security, and complete results. As a countermeasure for this, restoration was previously performed using Defense-GAN, but there were disadvantages such as long learning time and low quality of the restoration. In order to improve this, this paper proposes a method using adversarial examples created through FGSM according to image segmentation in addition to using the VQ-VAE model. First, the generated examples are classified as a general classifier. Next, the unsegmented data is put into the pre-trained VQ-VAE model, restored, and then classified with a classifier. Finally, the data divided into quadrants is put into the 4-split-VQ-VAE model, the reconstructed fragments are combined, and then put into the classifier. Finally, after comparing the restored results and accuracy, the performance is analyzed according to the order of combining the two models according to whether or not they are split.

A Study on IP Camera Security Issues and Mitigation Strategies (IP 카메라 보안의 문제점 분석 및 보완 방안 연구)

  • Seungjin Shin;Jungheum Park;Sangjin Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.111-118
    • /
    • 2023
  • Cyber attacks are increasing worldwide, and attacks on personal privacy such as CCTV and IP camera hacking are also increasing. If you search for IP camera hacking methods in spaces such as YouTube, SNS, and the dark web, you can easily get data and hacking programs are also on sale. If you use an IP camera that has vulnerabilities used by hacking programs, you easily get hacked even if you change your password regularly or use a complex password including special characters, uppercase and lowercase letters, and numbers. Although news and media have raised concerns about the security of IP cameras and suggested measures to prevent damage, hacking incidents continue to occur. In order to prevent such hacking damage, it is necessary to identify the cause of the hacking incident and take concrete measures. First, we analyzed weak account settings and web server vulnerabilities of IP cameras, which are the causes of IP camera hacking, and suggested solutions. In addition, as a specific countermeasure against hacking, it is proposed to add a function to receive a notification when an IP camera is connected and a function to save the connection history. If there is such a function, the fact of damage can be recognized immediately, and important data can be left in arresting criminals. Therefore, in this paper, we propose a method to increase the safety from hacking by using the connection notification function and logging function of the IP camera.

Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis (CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증)

  • Lee Chung-Sub;Lim Dong-Wook;Noh Si-Hyeong;Kim Tae-Hoon;Ko Yousun;Kim Kyung Won;Jeong Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2023
  • Sarcopenia is not well known enough to be classified as a disease in 2021 in Korea, but it is recognized as a social problem in developed countries that have entered an aging society. The diagnosis of sarcopenia follows the international standard guidelines presented by the European Working Group for Sarcopenia in Older People (EWGSOP) and the d Asian Working Group for Sarcopenia (AWGS). Recently, it is recommended to evaluate muscle function by using physical performance evaluation, walking speed measurement, and standing test in addition to absolute muscle mass as a diagnostic method. As a representative method for measuring muscle mass, the body composition analysis method using DEXA has been formally implemented in clinical practice. In addition, various studies for measuring muscle mass using abdominal images of MRI or CT are being actively conducted. In this paper, we develop an AI image segmentation model based on abdominal images of CT with a relatively short imaging time for the diagnosis of sarcopenia and describe the multicenter validation. We developed an artificial intelligence model using U-Net that can automatically segment muscle, subcutaneous fat, and visceral fat by selecting the L3 region from the CT image. Also, to evaluate the performance of the model, internal verification was performed by calculating the intersection over union (IOU) of the partitioned area, and the results of external verification using data from other hospitals are shown. Based on the verification results, we tried to review and supplement the problems and solutions.

Development of a Real-Time Control & Management System with In-Vitro Diagnostic Medical Device for Dengue Fever (실시간 뎅기열 관리를 위한 관제시스템 개발)

  • Changsun, Ahn;Yongho, Park;Jungdae, Moon;Jongchan, Park;Youngkon, Seo;Allen, Sohn;Yoonjong, Choi;Yanghwa, Ha;Bongsu, Jung;Youngjoo, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 2023
  • Dengue virus transmission is a viral infection disease between humans and Aedes mosquitoes. Dengue is ubiquitous throughout the tropics and subtropical zones, where 1/3 of the global population live. The weather in Korea is also changing to subtropical weather, resulting in increased vulnerable Korean population to dengue virus transmission. It is important to control and prevent the dengue risk with track-recording & monitoring system. It is also required to have the control system to treat and monitor dengue patients with various cases such as regions, ages, genders according to the track-record of the disease. In this paper, we developed a Dengue Control & Prevention System, which can monitor and control dengue outbreaks in real-time with in-vitro diagnostic devices. Dengue Control & Prevention System is composed of in-vitro diagnostic device, which is a fluorescent immunoassay, and real-time monitoring system. In the future, we expect that our Dengue Control & Prevention System can be upgraded to have various disease information from Korea Disease Control and Prevention Agency for government policies and diseases control in Korea.

Reliability Management - From the Perspective of Quality Management Engineer Test (신뢰성관리 - 품질경영기사 시험의 측면에서)

  • Jaiwook Baik
    • Industry Promotion Research
    • /
    • v.8 no.2
    • /
    • pp.37-43
    • /
    • 2023
  • Sampling In this study, we examined the problems and their improvement plans associated with the reliability management sector in quality management engineer test conducted in Korea. First of all, there seems to be a problem in that the terminology is not unified and some techniques essential for reliability analysis are not included. We also looked at quality and reliability tests performed in foreign countries (especially USA) that Koreans often acquire. In particular, it can be seen that the CRE test almost overlaps with the contents of the reliability management engineer test in Korea. However, while the USA is an open book test, Korea is not, so the problem is that there are too many formulas to memorize on the part of the test takers. In addition, the analysis of the data is done manually without using computer software. If the test were an open book test like the CRE test in USA, it will be a test that can go beyond fragmentary knowledge and check whether test takers have the essential elements in reliability management. Lastly, if we adopt re-certification system through education and work within a certain period of time, as in USA, it will be a qualification test suitable for modern people living in a flood of information.

An Improvement of Kubernetes Auto-Scaling Based on Multivariate Time Series Analysis (다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선)

  • Kim, Yong Hae;Kim, Young Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.73-82
    • /
    • 2022
  • Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requests is explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide services suitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a single metric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the service instance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predict system resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy based on this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes default auto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resources and response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as much as necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.

Design of CNN-based Braille Conversion and Voice Output Device for the Blind (시각장애인을 위한 CNN 기반의 점자 변환 및 음성 출력 장치 설계)

  • Seung-Bin Park;Bong-Hyun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.87-92
    • /
    • 2023
  • As times develop, information becomes more diverse and methods of obtaining it become more diverse. About 80% of the amount of information gained in life is acquired through the visual sense. However, visually impaired people have limited ability to interpret visual materials. That's why Braille, a text for the blind, appeared. However, the Braille decoding rate of the blind is only 5%, and as the demand of the blind who want various forms of platforms or materials increases over time, development and product production for the blind are taking place. An example of product production is braille books, which seem to have more disadvantages than advantages, and unlike non-disabled people, it is true that access to information is still very difficult. In this paper, we designed a CNN-based Braille conversion and voice output device to make it easier for visually impaired people to obtain information than conventional methods. The device aims to improve the quality of life by allowing books, text images, or handwritten images that are not made in Braille to be converted into Braille through camera recognition, and designing a function that can be converted into voice according to the needs of the blind.

Improved Resource Allocation Model for Reducing Interference among Secondary Users in TV White Space for Broadband Services

  • Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.55-68
    • /
    • 2023
  • In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.