• Title/Summary/Keyword: 컬러-$X^2$ 히스토그램

Search Result 18, Processing Time 0.029 seconds

Video Browsing Using An Efficient Scene Change Detection in Telematics (텔레매틱스에서 효율적인 장면전환 검출기법을 이용한 비디오 브라우징)

  • Shin Seong-Yoon;Pyo Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.147-154
    • /
    • 2006
  • Effective and efficient representation of color features of multiple video frames is an important vet challenging task for visual information management systems. This paper Proposes a Video Browsing Service(VBS) that provides both the video content retrieval and the video browsing by the real-time user interface on Web. For the scene segmentation and key frame extraction of video sequence, we proposes an efficient scene change detection method that combine the RGB color histogram with the X2 (Chi Square) histogram. Resulting key frames are linked by both physical and logical indexing. This system involves the video editing and retrieval function of a VCR's. Three elements that are the date, the need and the subject are used for video browsing. A Video Browsing Service is implemented with MySQL, PHP and JMF under Apache Web Server.

  • PDF

Scene Change Detection with 3-Step Process (3단계 과정의 장면 전환검출)

  • Yoon, Shin-Seong;Won, Rhee-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.147-154
    • /
    • 2008
  • First, this paper compute difference value between frames using the composed method of $X^2$ histogram and color histogram and the normalization. Next, cluster representative frame was decided by using the clustering for distance and the k-mean grouping. Finally, representative frame of group was decided by using the likelihood ratio. Proposed method can be known by experiment as outstanding of detection rather than other methods, due to computing of difference value, clustering and grouping, and detecting of representative frame.

  • PDF

Cause Diagnosis Method of Semiconductor Defects using Block-based Clustering and Histogram x2 Distance (블록 기반 클러스터링과 히스토그램 카이 제곱 거리를 이용한 반도체 결함 원인 진단 기법)

  • Lee, Young-Joo;Lee, Jeong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1149-1155
    • /
    • 2012
  • In this paper, we propose cause diagnosis method of semiconductor defects from semiconductor industrial images. Our method constructs feature database (DB) of defect images. Then, defect and input images are subdivided by uniform block. And the block similarity is measured using histogram kai-square distance after color histogram calculation. Then, searched blocks in each image are merged into connected objects using clustering. Finally, the most similar defect image from feature DB is searched with the defect cause by measuring cluster similarity based on features of each cluster. Our method was validated by calculating the search accuracy of n output images having high similarity. With n = 1, 2, 3, the search accuracy was measured to be 100% regardless of defect categories. Our method could be used for the industrial applications.

The Shot Change Detection Using a Hybrid Clustering (하이브리드 클러스터링을 이용한 샷 전환 검출)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Lee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.635-638
    • /
    • 2005
  • The purpose of video segmentation is to segment video sequence into shots where each shot represents a sequence of frames having the same contents, and then select key frames from each shot for indexing. There are two types of shot changes, abrupt and gradual. The major problem of shot change detection lies on the difficulty of specifying the correct threshold, which determines the performance of shot change detection. As to the clustering approach, the right number of clusters is hard to be found. Different clustering may lead to completely different results. In this thesis, we propose a video segmentation method using a color-X$^2$ intensity histogram-based fuzzy c-means clustering algorithm.

  • PDF

Video Browsing Service Using An Efficient Scene Change Detection (효율적인 장면전환 검출을 이용한 비디오 브라우징 서비스)

  • Seong-Yoon Shin;Yang-Won Rhee
    • Journal of Internet Computing and Services
    • /
    • v.3 no.2
    • /
    • pp.69-77
    • /
    • 2002
  • Recently, Digital video is one of the important information media delivered on the Internet and playing an increasingly important role in multimedia. This paper proposes a Video Browsing Service(VBS) that provides both the video content retrieval and the video browsing by the real-time user interface on Web, For the scene segmentation and key frame extraction of video sequence, we proposes an efficient scene change detection method that combines the RGB color histogram with the $x^2$(Chi Square) histogram. Resulting key frames are linked by both physical and logical indexing, This system involves the video editing and retrieval function of a VCR's, Three elements that are the date, the field and the subject are used for video browsing. A Video Browsing Service is implemented with MySQL, PHP and JMF under Apache Web Server.

  • PDF

Smoking Detection in Elevator Using 4-Stage Scene Change Detection (4단계 장면 전환 검출에 의한 엘리베이터에서 흡연 추출)

  • Shin, Seong-Yoon;Kim, Chang-Ho;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.103-104
    • /
    • 2014
  • 본 논문에서는 범죄 행위중 하나인 흡연을 엘리베이터 내에서 행하는 범죄자를 추출하고자 한다. 추출 방법은 변형된 컬러-$X^2$ 히스토그램을를 이용하여 차이값을 추출하고 정규화를 수행한다. 그러고 나서 4-단계의 장면 전환 검출 알고리즘을 이용하여 연속적인 프레임들에서 장면 전환이 발생한 지점을 찾아낸다. 끝으로, 비디오에 저장된 대량의 영상에서 흡연 영상의 검색 및 추출을 위한 방법을 제시한다.

  • PDF

Adaptive LSB Steganography for High Capacity in Spatial Color Images (컬러이미지 대상 고용량 적응형 LSB 스테가노그라피)

  • Lee, Haeyoung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This paper presents a new adaptive LSB steganography for high capacity in spatial color images. The number of least signi ficant bit (LSB) of each RGB component in a color image pixel, to replace with the data bits to be hidden, was determine d through analysis of the worst case peak signal noise ratio (PSNR). In addition, the combination of the number of bits is determined adaptively according to image content. That is, 70% of the data to be hidden is proposed to be replaced with 3 bit LSB of two components, 2 bit LSB of the rest component, and 30% be replaced with 4 bit LSB of each RGB compon ent. To find edge areas in an image, delta sorting in local area is also suggested. Using the proposed method, the data cap acity is 9.2 bits per pixel (bpp). The average PSNR value of the tested images with concealed data of up to 60Kbyte was 43.9 db and also natural histograms were generated.

Video Segmentation using the Automated Threshold Decision Algorithm (비디오 분할을 위한 자동 임계치 결정 알고리즘)

  • Ko Kyong-Cheol;Lee Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.65-74
    • /
    • 2005
  • This Paper Propose a robust scene change detection technique that use the weighted chi-square test and the automated threshold-decision algorithm. The weighted chi-test can subdivide the difference values of individual color channels by calculating the color intensities according to mSC standard, and it can detect the scene change by joining the weighted color intensities to the predefined chi-test which emphasize the comparative color difference values. The automated decision algorithm uses the difference values of frame-to-frame that was obtained by the weighted chi-test. In the first step, The average of total difference value and standard deviation value is calculated and then, subtract the mean value from the each difference values. In the next step, the same process is performed on the remained difference value. The propose method is tested on various sources and in the experimental results, it is shown that the Proposed method is efficiently estimates the thresholds and reliably detects scene changes.

  • PDF