• 제목/요약/키워드: 컬러 에지

검색결과 108건 처리시간 0.019초

장면 전환 기법을 이용한 동영상 검색 시스템의 하드웨어 구현 (Hardware Implementation of Moving Picture Retrieval System Using Scene Change Technique)

  • 김장희;강대성
    • 대한전자공학회논문지SP
    • /
    • 제45권3호
    • /
    • pp.30-36
    • /
    • 2008
  • 멀티미디어 정보는 다매체, 다특징, 다표현, 대용량성의 특징과 함께 그 양 또한 급속도로 증가하고 있다. 따라서 급격히 늘어난 방대한 정보로부터 필요한 정보를 검색하는 검색 시스템이 요구되고 있으며, 이러한 색인 및 검색 시스템이 실시간으로 처리되는 것이 필요하다. 동영상의 내용 기반 검색을 위하여 가장 일반적으로 사용할 수 있는 정보는 영상정보이다. 영상정보는 주로 비디오를 장면 분할할 때에 사용되며 이를 통하여 구조적인 비디오 브라우징을 할 수 있다. 비디오를 샷으로 구분하는 작업을 비디오 분할(video segmentation)이라고 하며, 비디오 분할을 위해 장면의 전환점인 컷을 검출하는 작업을 컷 검출(cut detection)이라고 한다. 본 연구에서는 MPEG-7 시각 기술자인 HMMD 컬러 모델과 에지 히스토그램 기술자를 사용하여 동영상 분할을 하였다. HMMD 컬러 공간은 다른 공간에 비해 인간의 색 지각에 매우 밀접한 것으로 나타난다. 본 논문에서는 이러한 검색 시스템을 하드웨어로 구현하였다.

스네이크 알고리즘에 의한 CCD 카메라 영상에서의 얼굴 및 얼굴 요소 추출 (Pace and Facial Element Extraction in CCD-Camera Images by using Snake Algorithm)

  • 판데홍;김영원;김정연;전병환
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.535-542
    • /
    • 2002
  • 최근 IT 산업이 급성장하면서 화상 회의, 게임, 채팅 등에서의 아바타(avatar) 제어를 위한 자연스러운 인터페이스 기술이 요구되고 있다. 본 논문에서는 동적 윤곽선 모델(active contour models; snakes)을 이용하여 복잡한 배경이 있는 컬러 CCD 카메라 영상에서 얼굴과 눈, 입, 눈썹, 코 등의 얼굴 요소에 대해 윤곽선을 추출하거나 위치를 파악하는 방법을 제안한다. 일반적으로 스네이크 알고리즘은 잡음에 민감하고 초기 모델을 어떻게 설정하는가에 따라 추출 성능이 크게 좌우되기 때문에 주로 단순한 배경의 영상에서 정면 얼굴의 추출에 사용되어왔다 본 연구에서는 이러한 단점을 파악하기 위해, 먼저 YIQ 색상 모델의 I 성분을 이용한 색상 정보와 차 영상 정보를 사용하여 얼굴의 최소 포함 사각형(minimum enclosing rectangle; MER)을 찾고, 이 얼굴 영역 내에서 기하학적인 위치 정보와 에지 정보를 이용하여 눈, 입, 눈썹, 코의 MER을 설정한다. 그런 다음, 각 요소의 MER 내에서 1차 미분과 2차 미분에 근거한 내부 에너지와 에지에 기반한 영상 에너지를 이용한 스네이크 알고리즘을 적용한다. 이때, 에지 영상에서 얼굴 주변의 복잡한 잡음을 제거하기 위하여 색상 정보 영상과 차 영상에 각각 모폴로지(morphology)의 팽창(dilation) 연산을 적용하고 이들의 AND 결합 영상에 팽창 연산을 다시 적용한 이진 영상을 필터로 사용한다. 총 7명으로부터 양 눈이 보이는 정면 유사 방향의 영상을 20장씩 취득하여 총 140장에 대해 실험한 결과, MER의 오차율은 얼굴, 눈, 입에 대해 각각 6.2%, 11.2%, 9.4%로 나타났다. 또한, 스네이크의 초기 제어점을 얼굴은 44개, 눈은 16개, 입은 24개로 지정하여 MER추출에 성공한 영상에 대해 스네이크 알고리즘을 수행한 결과, 추출된 영역의 오차율은 각각 2.2%, 2.6%, 2.5%로 나타났다.해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of

  • PDF

에지와 컬러 정보를 결합한 안면 분할 기반의 손실 함수를 적용한 메이크업 변환 (Makeup transfer by applying a loss function based on facial segmentation combining edge with color information)

  • 임소현;전준철
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.35-43
    • /
    • 2022
  • 메이크업은 사람의 외모를 개선하는 가장 보편적인 방법이다. 하지만 메이크업의 스타일이 매우 다양하기 때문에 한 개인이 본인에게 직접 메이크업을 하는 것에는 많은 시간적, 비용적 문제점이 존재한다. 이에 따라 메이크업 자동화에 대한 필요성이 증가하고 있다. 메이크업의 자동화를 위해 메이크업 변환(Makeup Transfer)가 연구되고 있다. 메이크업 변환은 메이크업이 없는 얼굴 영상에 메이크업 스타일을 적용시키는 분야이다. 메이크업 변환은 전통적인 영상 처리 기반의 방법과 딥러닝 기반의 방법으로 나눌 수 있다. 특히 딥러닝 기반의 방법에서는 적대적 생성 신경망을 기반으로 한 연구가 많이 수행되었다. 하지만 두 가지 방법 모두 결과 영상이 부자연스럽거나 메이크업 변환의 결과가 뚜렷하지 않고 번지거나 메이크업 스타일 얼굴 영상의 영향을 많이 받는다는 단점이 있다. 메이크업의 뚜렷한 경계를 표현하고 메이크업 스타일 얼굴 영상에서 받는 영향을 완화시키기 위해 본 연구에서는 메이크업 영역을 분할하고 HoG(Histogram of Gradient)를 사용해 손실 함수를 계산한다. HoG는 영상 내에 존재하는 에지의 크기와 방향성을 통해 영상의 특징을 추출하는 방법이다. 이를 통해 에지에 대해 강건한 학습을 수행하는 메이크업 변환에 대해 제안한다. 제안한 모델을 통해 생성된 영상과 베이스 모델로 사용하는 BeautyGAN을 통해 생성된 영상을 비교해 본 연구에서 제안한 모델의 성능이 더 뛰어남을 확인하고 추가로 제시할 수 있는 얼굴 정보에 대한 사용 방법을 향후 연구로 제시한다.

SVM을 이용한 얼굴 검출 성능 향상 방법 (Performance Improvement Method of Face Detection Using SVM)

  • 지형근;이경희;정용화
    • 정보처리학회논문지B
    • /
    • 제11B권1호
    • /
    • pp.13-20
    • /
    • 2004
  • 실시간 자동 얼굴 인식 기술에 있어서 정확한 얼굴의 검출은 필수적이며, 얼굴 인식의 성능에 큰 영향을 미치는 매우 중요한 부분이다. 본 논문에서는 컬러 정보, 에지 정보 및 이진화 정보를 복합적으로 이용하여 입력 영상으로부터 두 눈의 영역을 검출하고 이를 이용해 얼굴 후보 영역을 검출한다. 검출된 눈 후보 영역과 얼굴 후보 영역에 대하여 얼굴 검증과 눈 검증용으로 학습된 각각의 SVM을 이용하여 검증한다. 이러한 검증 과정을 거침으로써 잘못된 검출을 막아 빠르고 신뢰성 있는 얼굴 검출이 가능하다. 실험을 통해 본 연구에서 제안한 방법이 99% 이상의 얼굴 검출 성공율을 보임을 확인하였다.

실시간 모바일 IPTV의 열화 컨텐츠 평가를 위한 효율적 QoE 인지형 전송 스트림 측정 스키마 (An Efficient QoE-Aware Transport Stream Assessment Schemes for Realtime Mobile IPTV's Distorting Contents Evaluation)

  • 김진술;윤장우
    • 한국통신학회논문지
    • /
    • 제35권2B호
    • /
    • pp.352-360
    • /
    • 2010
  • IPTV나 Mobile IPTV 같은 IP 기반의 방 통 융합형 멀티미디어 서비스는 사용자 인지적 QoE가 보장된 서비스를 제공하는 것이 절실하다. 본 논문에서는 실시간 Mobile IPTV 서비스시 다양한 IP망의 조건에 따라 발생하는 에러의 영향으로 열화된 컨텐츠의 손상 정도를 보다 정확하고 효율적으로 평가하기 위한 방안을 제안하였다. QoE를 고려한 실시간 전송시 측정을 위해서 손상된 프레임의 효율적 정합 및 측정 방법을 보여 주었다. 제안된 알고리즘은 실시간 전송 스트림의 각 프레임으로 부터 디지털화된 컨텐츠의 밝기 정보를 추출하여 분석하며 블러, 블록, 에지 비즈니스, 컬러 에러 등 QoE 요소들을 RR 기반의 측정 파라메터로 활용하여 평가하였다. 제안된 방안의 정확성을 증명하기 위해서 원 소스 컨텐츠와 손상된 컨텐츠를 비교 분석하였다.

컬링과 클리핑을 포함한 3D그래픽스 래스터라이져 설계 (A Design of a 3D Graphics Rasterizer with culling and clipping)

  • 이광엽;구용서
    • 대한전자공학회논문지SD
    • /
    • 제44권8호
    • /
    • pp.89-96
    • /
    • 2007
  • 본 논문은 효율적인 3차원 그래픽스를 위해 컬링과 클리핑을 포함한 래스터라이져를 설계하였다. 제안하는 래스터라이져는 모바일 환경을 위해 구현하였고, 프러스텀 컬링, 백 페이스 컬링, Y축 클리핑, X축 클리핑을 처리한다. 래스터라이져는 트라이 앵글 셋업, 에지 워크, 스팬 프로세서 유닛으로 구성된다. 컬링, 클리핑을 포함한 래스터라이져의 각 유닛으로 설계하였다. 래스터라이져는 16 비트 깊이 값과 16 비트 컬러 값을 갖는 고라우드 쉐이딩을 지원한다. 제안한 래스터라이져는 52M pixels/sec의 처리 능력을 갖는다.

실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식 (SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time)

  • 신기한;전준철;민경필
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

적응 형태학적 WCNN 알고리즘을 이용한 컬러 영상 에지 검출 연구 (A Study on Color Image Edge detection Using Adaptive Morphological Wavelet-CNN Algorithm)

  • 백영현;신성;문성룡
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.201-205
    • /
    • 2004
  • The digital color image can be distorted by noise for a transmission or other elements of system. It happens to vague of a boundary side in the division of a color image object, especially, boundary side of an input color image is very important because it can be determined to the division and detection element in pattern recognition. Therefore it is boundary part In this paper, it detects the optimal edge with applying this color image to WCNN algorithm, after it does level up a boundary side of a color image by using the adaptive morphology as the threshold of an input color image. Also, it is used not a conventional fixed mask edge detection method but variable mask method which is cal led a variable BBM. It is confirmed by simulation that the proposed algorithm can be got the batter result edge at the place of closing to each edges and having smoothly curved line.

  • PDF

YCbCr 색공간에서 피부색과 윤곽선 정보를 이용한 얼굴 영역 검출 (A Facial Region Detection using the Skin Color and Edge Information at YCbCr)

  • 권혁봉;권동진;장언동;윤영복;안재형
    • 한국멀티미디어학회논문지
    • /
    • 제7권1호
    • /
    • pp.27-34
    • /
    • 2004
  • 본 논문에서는 컬러 영상에서 색상과 에지 정보를 이용한 얼굴 영역 검출 알고리즘을 제안한다. 제안된 알고리즘은 YCbCr 색공간에서 Cb와 Cr성분을 이용하여 피부색 분할을 한 후에 형태학적 필터링과 레이블링을 통해 얼굴 후보 영역을 분리한다. 분리된 각 후보 영역에 대해 휘도 성분 Y에서 소벨 마스크의 수직 연산자를 적용한 후에 수평 투영을 통해 나타난 최대값을 눈의 위치로 검출해낸다. 비슷하게 얼굴의 지형적인 특징과 소벨 마스크의 수평 연산자를 적용하여 계산된 수평 투영의 최대값에 따라 턱 부분을 검출한다. 실험 결과, 기존의 연구와 검출율을 비슷하면서도 턱의 위치를 검출함으로써 목 부분이 얼굴 영역에 포함되는 것을 방지할 수 있음을 볼 수 있다.

  • PDF

색상 정보와 퍼지 클러스터링 알고리즘을 이용한 실시간 수화 인식 (Real Time Recognition of Finger-Language Using Color Information and Fuzzy Clustering Algorithm)

  • 강효주;이동균;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.419-423
    • /
    • 2008
  • 사람의 손동작은 오랫동안 하나의 언어역할을 하는 통신 수단으로 사용되어 왔다. 이러한 손동작 중에서 가장 체계를 갖춘 수화는 청각장애인이 일반인과 일상 대화를 할 수 있도록 도와주는 주요한 통신 수단이다. 하지만 건청인들의 대부분이 습득하고 있지 않아 청각장애인들과 의사소통이 거의 불가능 한 것이 현실이다. 따라서 본 논문에서는 건청인과 청각장애인들 간의 의사소통을 원활하게 하기 위해 색상 정보와 퍼지 클러스터링 알고리즘을 이용한 실시간 수화 인식 방법을 제안한다. 제안된 방법은 화상 카메라를 통해 얻어진 실시간 영상에서 YCbCr 컬러 공간에서 색차 정보에 해당하는 Cb, Cr 정보를 각각 추출한 후, 이진화한 영상과 원본 영상에서 마스크를 통한 에지를 추출한 이진화 영상에 대해 논리연산을 통해 두 손의 위치와 외곽을 추출한다. 추출된 각 정보를 조합하여 8 방향 윤곽선 추적 알고리즘을 적용하여 객체의 위치를 추적한다. 그리고 추적한 객체의 영역에 대해 형태학적 정보를 이용하여 잡음을 제거한 후, 최종적으로 두 손의 영역을 추출한다. 추출된 손의 영역은 퍼지 클러스터링 기법 중의 FCM 알고리즘을 적용하여 수화의 특징들을 분류하고 인식한다. 제안된 방법의 성능을 평가하기 위해 화상카메라를 통해 얻어진 실시간 영상을 대상으로 실험한 결과, 제안된 방법이 두 손 영역의 추출에 효과적이고 수화 인식에 있어서 가능성을 확인하였다.

  • PDF