• Title/Summary/Keyword: 컬러 세그멘테이션

Search Result 8, Processing Time 0.022 seconds

Walking Area and Obstacle Detection System Using Block Segmentation in the Outdoor Environment (블록기반 세그멘테이션을 이용한 실외환경에서의 보행영역 및 장애물 검출)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.185-188
    • /
    • 2009
  • 단일 카메라 영상으로 입력되는 환경 정보에 대해서 보도에 대한 길의 소실점과 보도 영역에 대한 정보를 획득하는 방법과 보도 영역에 대해 블록 세그멘테이션을 통하여 장애물과 같은 물체 영역을 구분한다. 소실정과 보도 영역을 획득하기 위한 방법으로 에지영상에서 보도의 외곽선 정보를 추출하도록 한다. 이를 위해 체인코드를 이용하여 특정한 방향으로 향하는 직선 성분을 검출하도록 한다 보도 영역 내에 존재하는 물체의 영역을 구분하기 위해서 영역을 특정 크기를 가지는 블록으로 구분하고 각 블록이 가지는 평균 컬러 정보를 이용하여 영역을 세그멘테이션 한다. 세그멘테이션을 통해 얻은 영역을 통해 보도의 영역과 장애물의 영역을 구분하고 각 장애물의 위치를 계산하다. 알고리즘의 평가를 위해 실내의 복도 환경과 단순한 형태를 가지는 실외 환경에서 획득한 영상을 이용하여 실험하였다.

  • PDF

Speed Sign Recognition by Using Hierarchical Application of Color Segmentation and Normalized Template Matching (컬러 세그멘테이션 및 정규화 템플릿 매칭의 계층적 적용에 의한 속도 표지판 인식)

  • Lee, Kang-Ho;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.257-262
    • /
    • 2009
  • A method of the region extraction and recognition of a speed sign in the real road environment is proposed. The region of speed sign is extracted by using color information and then numbers are segmented in the region. We improve the recognition rate by performing an incline compensation of the speed sign for directions clockwise and counterclockwise. In image sequences of the real road environment, a robust recognition results are achieved with speed signs at normal condition as well as inclined.

Content-based Image Retrieval using Color and Block Region Features (컬러와 블록영역 특징을 이용한 내용기반 화상 검색)

  • 최기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.610-618
    • /
    • 2002
  • This paper presents a new image retrieval method that is based on color space and block region information. The color space information of images can be obtained by color binary set, and the block region information can be obtained by regional segmentation and feature. The candidate images are decided by comparing with color features and its binary set of query image and image feature database for retrieval. Particularly, it is possible that the retrieval using similarity-measurements has the weights of color spatial distribution arid its objective block region features. This retrieval method using color spatial and block region features is shown with the effectiveness on the result of implementation on image database with 6,000 images.

Traffic Light and Speed Sign Recognition by using Hierarchical Application of Color Segmentation and Object Feature Information (색상분할 및 객체 특징정보의 계층적 적용에 의한 신호등 및 속도 표지판 인식)

  • Lee, Kang-Ho;Bang, Min-Young;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.207-214
    • /
    • 2010
  • A method of the region extraction and recognition of a traffic light and speed sign board in the real road environment is proposed. Traffic light was recognized by using brightness and color information based on HSI color model. Speed sign board was extracted by measuring red intensity from the HSI color information We improve the recognition rate by performing an incline compensation of the speed sign for directions clockwise and counterclockwise. The proposed algorithm shows a robust recognition rate in the image sequence which includes traffic light and speed sign board.

Gate Management System by Face Recognition using Smart Phone (스마트폰을 이용한 얼굴인식 출입관리 시스템)

  • Kwon, Ki-Hyeon;Lee, Gun-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.29-30
    • /
    • 2011
  • 본 논문에서는 스마트폰 얼굴인식을 통해 출입을 관리하는 시스템을 설계하고 구현한다. 이를 위해 스마트폰에서 얼굴인식을 위한 사용가능한 다양한 알고리즘을 조사하였다. 얼굴 인식의 첫 단계는 얼굴검출이며 다음 단계는 얼굴인식이다. 얼굴 검출을 위해서는 컬러 세그멘테이션, 템플릿매칭 등의 알고리즘을 적용하였으며, 얼굴 인식을 위해서는 PCA(Principal Component Analysis)에 기반을 둔 Eigenface와 LDA(Linear Discriminant Analysis)에 기반을 둔 Fisherface를 비교하여 구현하고 적용하였다. 스마트 폰의 제한된 하드웨어에서 얼굴인식 시스템을 구현하는 관계로 알고리즘의 정확도와 알고리즘의 계산 복잡도 사이에서 적절한 조절이 필요하였다.

  • PDF

Face Detection Algorithm using Kinect-based Skin Color and Depth Information for Multiple Faces Detection (Kinect 디바이스에서 피부색과 깊이 정보를 융합한 여러 명의 얼굴 검출 알고리즘)

  • Yun, Young-Ji;Chien, Sung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.137-144
    • /
    • 2017
  • Face detection is still a challenging task under severe face pose variations in complex background. This paper proposes an effective algorithm which can detect single or multiple faces based on skin color detection and depth information. We introduce Gaussian mixture model(GMM) for skin color detection in a color image. The depth information is from three dimensional depth sensor of Kinect V2 device, and is useful in segmenting a human body from the background. Then, a labeling process successfully removes non-face region using several features. Experimental results show that the proposed face detection algorithm can provide robust detection performance even under variable conditions and complex background.

Gate Management System by Face Recognition using Smart Phone (스마트폰을 이용한 얼굴인식 출입관리 시스템)

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.9-15
    • /
    • 2011
  • In this paper, we design and implement of gate management system by face recognition using smart phone. We investigate various algorithms for face recognition on smart phones. First step in any face recognition system is face detection. We investigated algorithms like color segmentation, template matching etc. for face detection, and Eigen & Fisher face for face recognition. The algorithms have been first profiled in MATLAB and then implemented on the Android phone. While implementing the algorithms, we made a tradeoff between accuracy and computational complexity of the algorithm mainly because we are implementing the face recognition system on a smart phone with limited hardware capabilities.

High-Quality Depth Map Generation of Humans in Monocular Videos (단안 영상에서 인간 오브젝트의 고품질 깊이 정보 생성 방법)

  • Lee, Jungjin;Lee, Sangwoo;Park, Jongjin;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • The quality of 2D-to-3D conversion depends on the accuracy of the assigned depth to scene objects. Manual depth painting for given objects is labor intensive as each frame is painted. Specifically, a human is one of the most challenging objects for a high-quality conversion, as a human body is an articulated figure and has many degrees of freedom (DOF). In addition, various styles of clothes, accessories, and hair create a very complex silhouette around the 2D human object. We propose an efficient method to estimate visually pleasing depths of a human at every frame in a monocular video. First, a 3D template model is matched to a person in a monocular video with a small number of specified user correspondences. Our pose estimation with sequential joint angular constraints reproduces a various range of human motions (i.e., spine bending) by allowing the utilization of a fully skinned 3D model with a large number of joints and DOFs. The initial depth of the 2D object in the video is assigned from the matched results, and then propagated toward areas where the depth is missing to produce a complete depth map. For the effective handling of the complex silhouettes and appearances, we introduce a partial depth propagation method based on color segmentation to ensure the detail of the results. We compared the result and depth maps painted by experienced artists. The comparison shows that our method produces viable depth maps of humans in monocular videos efficiently.