• Title/Summary/Keyword: 컬러매칭

Search Result 66, Processing Time 0.026 seconds

Determining the reference image with radiometrically different images (밝기가 다른 이미지에서의 레퍼런스 이미지 결정 방법)

  • Oh, Changjae;Ham, Bumsub;Shin, Hyungchul;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.8-10
    • /
    • 2011
  • 컬러는 영상처리 분야에서 중요한 단서로 사용될 수 있는 정보이다. 하지만 실제로 촬영한 영상의 경우에는 빛과 카메라 특성 등 다양한 요소들의 영향으로 인해 이미지 간 컬러 정보의 불일치가 빈번히 일어난다. 따라서 컬러가 다른 여러 장의 영상을 입력 영상으로 사용하는 경우, 입력 영상간 컬러를 동일하게 맞춰 주어야 한다. 이를 수행함에 있어서, 어떠한 이미지를 레퍼런스 이미지로 결정할 것인가는 매우 중요한 문제이다. 이에 본 논문에서는, 히스토그램 등화(histogram equalization) 기법을 이용하여 입력 이미지들의 비용을 결정해줌으로써, 레퍼런스 이미지를 결정하는 방법을 제시한다. 스테레오 매칭을 통해 다양한 밝기의 입력 영상에서 가장 좋은 결과를 얻을 수 있는 레퍼런스 이미지를 결정할 수 있음을 보였다.

  • PDF

Performance Improvement of Stereo Matching by Image Segmentation based on Color and Multi-threshold (컬러와 다중 임계값 기반 영상 분할 기법을 통한 스테레오 매칭의 성능 향상)

  • Kim, Eun Kyeong;Cho, Hyunhak;Jang, Eunseok;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • This paper proposed the method to improve performance of a pixel, which has low accuracy, by applying image segmentation methods based on color and multi-threshold of brightness. Stereo matching is the process to find the corresponding point on the right image with the point on the left image. For this process, distance(depth) information in stereo images is calculated. However, in the case of a region which has textureless, stereo matching has low accuracy and bad pixels occur on the disparity map. In the proposed method, the relationship between adjacent pixels is considered for compensating bad pixels. Generally, the object has similar color and brightness. Therefore, by considering the relationship between regions based on segmented regions by means of color and multi-threshold of brightness respectively, the region which is considered as parts of same object is re-segmented. According to relationship information of segmented sets of pixels, bad pixels in the disparity map are compensated efficiently. By applying the proposed method, the results show a decrease of nearly 28% in the number of bad pixels of the image applied the method which is established.

Fast Multiple Face Detection and Tracking Algorithm using Depth and Color Information (깊이정보와 컬러정보를 이용한 빠른 다중 얼굴 검출 및 추적 알고리즘)

  • Kim, Woo-Youl;Bae, Yun-Jin;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.68-70
    • /
    • 2012
  • 본 논문에서는 컬러영상과 깊이영상을 이용하여 여러 명의 얼굴을 검출하고 추적하는 알고리즘을 제안한다. 제안하는 알고리즘은 얼굴 검출부와 추적부로 나뉘어져 있으며, 얼굴 검출 방법은 기존의 Adaboost를 이용하지만, 속도 개선을 위해 깊이정보와 컬러정보를 이용하여 탐색영역을 얼굴이 존재하는 영역으로 제한하여 얼굴은 검출한다. 얼굴 추적 방법은 템플릿 매칭 방법과 나선형 탐색방법을 사용하며, 그리고 조기 종료 기법을 사용하여 수행시간을 줄였다.

  • PDF

Speed Sign Recognition by Using Hierarchical Application of Color Segmentation and Normalized Template Matching (컬러 세그멘테이션 및 정규화 템플릿 매칭의 계층적 적용에 의한 속도 표지판 인식)

  • Lee, Kang-Ho;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.257-262
    • /
    • 2009
  • A method of the region extraction and recognition of a speed sign in the real road environment is proposed. The region of speed sign is extracted by using color information and then numbers are segmented in the region. We improve the recognition rate by performing an incline compensation of the speed sign for directions clockwise and counterclockwise. In image sequences of the real road environment, a robust recognition results are achieved with speed signs at normal condition as well as inclined.

A Histogram Matching Scheme for Color Pattern Classification (컬러패턴분류를 위한 히스토그램 매칭기법)

  • Park, Young-Min;Yoon, Young-Woo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.689-698
    • /
    • 2006
  • Pattern recognition is the study of how machines can observe the environment, learn to distinguish patterns of interest from their background, and make sound and reasonable decisions about the categories of the patterns. Color image consists of various color patterns. And most pattern recognition methods use the information of color which has been trained and extract the feature of the color. This thesis extracts adaptively specific color feature from images with several limited colors. Because the number of the color patterns is limited, the distribution of the color in the image is similar. But, when there are some noises and distortions in the image, its distribution can be various. Therefore we cannot extract specific color regions in the standard image that is well expressed in special color patterns to extract, and special color regions of the image to test. We suggest new method to reduce the error of recognition by extracting the specific color feature adaptively for images with the low distortion, and six test images with some degree of noises and distortion. We consequently found that proposed method shouws more accurate results than those of statistical pattern recognition.

Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method (영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색)

  • Park, Jung-Man;Yoo, Gi-Hyoung;Jang, Se-Young;Han, Deuk-Su;Kwak, Hoon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

Sensibility Recognition and Child Color Psychology in Image (영상에서의 감성인식과 아동색채심리)

  • Shin, Seong-Yoon;Lee, Kyung-Joo;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.133-136
    • /
    • 2010
  • 작금의 현대 사회는 바쁜 일상 속 부모들의 관심이 부족한 자녀들에 대한 심리적 안정과 환경 적응력을 위한 색채심리치료의 필요성이 급증하고 있다. 이에 우리는 아동의 그림 등으로 아동의 감성상태를 파악하여야 한다. 현재 진행 중인 감성의 실증적 연구는 크게 심리학적 관점과 공학적 관점에서 이루어지고 있다. 심리학분야에서 이해하고 있는 감성은 감정에 가깝다고 할 수 있고, 한편 공학적 관점에서 이해되는 감성은 '외부의 물리적 자극에 의한 감각, 지각으로부터 인간의 내부에 야기되는 고도의 심리적 체험'으로 정의할 수 있다. 본 논문에서는 색채 이미지 공간에서의 단색, 배색의 정보를 활용하여 색채조화를 식별하고, 아동의 그림에서의 심리를 추출해내는 시스템을 제공한다. 우선 색채 이미지공간을 기반으로 감성 데이터베이스를 구축한다. 이후에 영상을 K-Means알고리즘을 이용해 클러스터링 하여 방대한 컬러 값들을 그룹화 시킨 후에 데이터베이스와 매칭을 시켜 감성을 추출해 내고, 아동의 그림에서의 컬러 분포도를 이용하여 아동색채심리를 알아본다.

  • PDF

사용자-객체 상호작용을 위한 복잡 배경에서의 객체 인식

  • Bae, Ju-Han;Hwang, Yeong-Bae;Choe, Byeong-Ho;Kim, Hyo-Ju
    • Information and Communications Magazine
    • /
    • v.31 no.3
    • /
    • pp.46-53
    • /
    • 2014
  • 사용자-객체 상호작용을 위해서는 영상 내 객체의 종류와 위치를 정확하게 파악하여 사용자가 객체에 관련된 행동을 취할 경우, 그에 맞는 상호작용을 수행해야 한다. 이러한 객체인식에 널리 사용되는 지역 불변 특징량 기반의 방법론은 복잡한 배경이나 균일 물체에 대하여 잘못된 매칭으로 인식률이 저하된다. 본고에서는 이를 해결하기 위해, 컬러와 깊이 근접도 기반 깊이 계층을 나누고, 복잡 배경으로부터 생기는 잘못된 특징점 대응을 최소화 하기 위해 각 깊이 계층과 인식 물체 영상간의 특징점 대응을 수행한다. 또한, 각 깊이 계층영역에서 색상 히스토그램 재투영으로 객체의 위치를 추정하고 추정 영역과 인식 물체 영상간의 생상 및 깊이 유사도를 판단한다. 최종적으로, 복잡 배경 효과를 최소화한 특징점 대응의 수, 색상 및 컬러 유사도를 고려하여 신뢰도를 측정하여 객체를 인식하게 되며, 이를 통해 복잡한 배경에서도 사용자와 객체간의 유연한 상호작용이 가능해진다.

Color Sensible Psychology of Child in Image (영상에서의 아동의 색채 감성 심리)

  • Shin, Seong-Yoon;Baek, Jeong-Uk;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.649-650
    • /
    • 2010
  • This paper construct the sensibility database by extracting sensibility of 28 colors based on 12 color wheel. And, after the large color values are grouped by clustering of input image using k-mean algorithm, sensibility was extracted by matching with color and database. Also, we see the color sensible psychology of child using color distribution of children in painting.

  • PDF

A Stereo Pair Matching Method Using Random Color Pattern Projection (랜덤컬러패턴을 이용한 스테레오 정합법)

  • Kim, Gi-Seon;Choi, Ran;Park, Jun-Young;Cho, Chang-Suk
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.499-502
    • /
    • 2012
  • 문양이나 패턴이 없는 민 무늬의 물체에는 동일점 정합에 의해 3 차원 계측을 하는 스테레오 정합방식을 적용할 수 없다. 본 논문에서는 난수 발생 함수로 제작한 랜덤 칼라 패턴을 대상물체에 투영하여, 대상 물체 표면에 특징적인 문양을 인위적으로 생성시키는 것에 의해 민 무늬의 물체를 스테레오 정합법으로 측정하는 방식을 제안한다. 투사된 패턴으로 자체 문양을 지니게 된 물체를 스테레오 카메라로 촬영하였고, 동일점 정합은 전역 스테레오 정합 방식의 일종인 TRW 방식에 의한 컬러 매칭 방식을 사용하였다. 제안된 방식은 원형의 흰색 석고상 3 차원 계측에 적용되었고, 안정적이고 정확한 스테레오 정합 계측 결과를 보였다.