• Title/Summary/Keyword: 컨트롤 밸브

Search Result 123, Processing Time 0.025 seconds

A Study on Design of Ultra-High-Pressure Ball Valve for Hydrogen Station (수소 충전소용 초고압 볼밸브 설계에 관한 연구)

  • Choi, Ji Ah;Ji, Sang Won;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.23-29
    • /
    • 2021
  • Hydrogen energy is the clean energy source of the future. Ultra-high-pressure hydrogen is used in hydrogen stations, with its parts being developed. On the other hand, ultra-high-pressure ball valve, which is one of its parts, depends on overseas, with the level of domestic research on this being only about 10% of advanced technology research on this abroad. In this study, the shape of an ultra-high-pressure ball valve for a hydrogen station was designed to improve its structural strength. The valve body was designed according to distance between both processed body holes along inlet and outlet ports. The designed vale body was then analyzed using ANSYS to check whether points with stress were concentrated. In addition, the valve with improved body was analyzed to confirm that the valve satisfied the design condition.

A Study on Flow Rate Characteristic and Dynamic Performance on Diaphragm Solenoid Valve (다이어프램형 밸브의 유량특성과 동적성능에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Solenoid valve has used in various industrial field extensively. A solenoid valve has different size, shape and method of operation accordantly to industrial field. Many researchers study on kinds of solenoid valve such as flow rate, dynamic, magnetic field, valve shape and operating method. But the flow rate characteristic and dynamic response time performance on the diaphragm valve are not studied. This paper describes the flow rate characteristic and dynamic response time performance on the diaphragm valve. At first, the diaphragm valve is simulated in AMESim simulation tool. AMESim model found that an effect of valve performance depends on parameter. The parameter is the diaphragm orifice area. And the performance test bench confirms the effect in this parameter. Finally, it finds out the flow rate characteristic and dynamic response time performance on the diaphragm valve.

Static Performance Diagnosis Based on Pressure Signal for a Flow Control Servovalve or Proportional Direction Valve (유량제어용 서보밸브와 비례방향밸브의 압력신호를 이용한 정적 성능 진단에 관한 연구)

  • Kim, S.D.;Jeon, S.H.;Kim, I.D.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.32-41
    • /
    • 2012
  • Most diagnosis methods for servo valves requires installing spool displacement sensor or flow sensor as well as pressure sensor. The measurement of flow is hard to implement and many kinds of servovalves or proportional direction valves do not have a built-in spool displacement sensor. In this study, static performances of servovalve or proportional-direction-valve are studied theoretically and a diagnosis technique, which uses only load pressure and input current signal, is assessed. An experimental setup was made based upon a personal computer and the LabVIEW graphical language. A series of diagnosis tests were performed and the analysis results showed it possible to measure the pressure gain, hysteresis and null bias in a relatively simple methodology.

A Study on Frequency Characteristics of a Bender Type High-Speed Piezoelectric Pneumatic Valve (벤더형 고응답 압전밸브의 주파수 특성에 관한 연구)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.;Lee, S.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.14-18
    • /
    • 2012
  • Two kinds of piezoelectric actuator are applied to the valve for controlling the direction, the flow and the pressure of the fluid. One is a stack type piezoelectric actuator which has very fast response characteristics but very tiny displacement. The other is a bender type piezoelectric actuator which has also fast response characteristics but lower than the stack type one, and has longer displacement than the stack type one. So, the bender type piezoelectric actuator has advantage to apply to the valve for controlling a large amount of flow and fast on-off operating. In this study, the bender type piezoelectric pneumatic valve for color sorter is designed and fabricated. The new type high speed piezo valve with the both side supporting mechanism for high operating frequency and high reliability is discussed for separating the foreign body from the grains. Finally, the performance characteristics of a fabricated valve are analyzed and the frequency characteristics are also discussed for substituting the conventional type solenoid actuator.

Dynamic Characteristics of Electro-hydraulic Proportional Valve for an Independent Metering Valve of Excavator (굴삭기 IMV용 비례전자밸브의 동특성)

  • Kang, Chang Nam;Yun, So Nam;Jeong, Hwang Hoon;Kim, Moon Gon
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Many research studies have been carried out related to saving energy and environmental pollution in the field of construction machinery. The best solution for reducing the related environmental pollution is to reduce fuel consumption by upgrading the energy efficiency of machinery used in this field. An efficiency upgrade in the field of construction machinery would mean minimizing the pressure loss in hydraulic pipe lines or achieving optimal operating conditions while responding to a load. One way to achieve this is to make an equivalent circuit, like an electrohydrostatic actuator, or to improve the spool type valve using the 4/3 way method. This study deals with an electrohydraulic proportional flow control valve. SimulationX software is used as a simulation tool for analyzing the dynamic characteristics. The analysis results, including the performance and characteristics of design parameters, are discussed and the validity of the theoretical analysis is also evaluated.

an Analysis of the Variation on the Impedance Characteristic according to Effective Area of Globe Control Valve at Low Frequency Perturbation (저주파 압력섭동에서 글로브 제어밸브의 유효 단면적에 따른 임피던스 특성 변화 해석)

  • Park, Seungsoo;Yoon, Woongsup;ohm, Wonsuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.718-723
    • /
    • 2017
  • In this paper, Analytical study is carried out on the impedance characteristics of the globe control valve, which is mainly used for thrust control in liquid rockets, according to the effective area at low frequency perturbation. The impedance tends to increase according to effective area and the cause of impedance characteristic change through flow field visualization is investigated. In the future, the information on the change in the impedance characteristics of the control valve can be used to obtain the impedance of the supply system and it can be utilized to predict pogo phenomenon as well as design accumulator and orifice to reduce the pogo phenomenon.

  • PDF

Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices (릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.

Dynamic Analysis of the Valves installed in the swash plate type of Hydraulic Driving Motor (사판식 구동 모터에 장착된 밸브의 동적거동 해석)

  • Noh, D.K.;Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.62-69
    • /
    • 2012
  • Recently, hydraulic motor is getting the spotlight. It is resulted from rapid civil engineering public works by a lot of developing countries around the world. In this study, we divided the valves which are affixed in the hydraulic motor into some parts, implemented them through computer simulation, verified validation of each component, and analyzed behavior adding driving condition. Through the analyzed results with general driving condition, we found the reason why behavior became unstable as the motor had started spinning. Through the analyzed results with tough driving condition, we verified that the valve works well with it's production purpose.

A Study on the Bucket Tip's Position Control for the Intelligent Excavation System (지능형 굴삭 시스템의 버킷 끝단 위치제어에 관한 연구)

  • Kim, K.Y.;Jang, D.S.;Ahn, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.32-37
    • /
    • 2008
  • For the bucket tip position control of the excavator, a traditional hydraulic excavator system was exchanged into an electro-hydraulic one. EPPR valves are attached to the traditional MCV and hydraulic joysticks are replaced by electronic ones to develop the electro-hydraulic system. To control the electronic pump with a good performance, the control logic for the pump is deduced from the AMESim simulation and the experimental method on the test bench. To get a good position control performance of the excavator bucket tip, PI+AntiWindup controller is selected as a position controller. The experimental results showed the good controllability for the electro-hydraulic excavator system on the test bench.

  • PDF

A Study on Modeling of the Pneumatic Part in a Gas Blow-Down System Including Pressure Regulator and Pipe-Line Characteristics (압력조절밸브와 배관 특성을 포함한 유도무기용 기체 블로우다운 시스템의 공압부 모델링에 관한 연구)

  • Park, Youngwoo
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.32-39
    • /
    • 2017
  • In this study, a mathematical model of the pneumatic part in a gas blow-down system is proposed. The mathematical model consists of four major parts: pressure vessel, reservoir, pressure regulator and pipe-line. To ensure accuracy in long-time simulations, heat transfer between gas and pressure vessel is considered. The model is validated by comparing simulation results with experimental data. Experiments are conducted on the ground, where free convection can be assumed. Simulation results indicate the proposed model can accurately describe behavior of a gas blow-down system. Therefore, it may be used for design and analysis of similar systems with a slight modification.