• 제목/요약/키워드: 컨텍스트 로그

검색결과 20건 처리시간 0.034초

스마트폰 환경에서 사용자의 컨텍스트 추출을 통한 라이프로그 자동 태깅 기법 (Automatic Lifelog Tagging through Context Detection in the Smart Phone)

  • 김병준;김탁은;이기용;김명호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.84-89
    • /
    • 2010
  • 최근 스마트폰의 성능이 향상되고 다양한 기능이 추가됨에 따라 기록되는 라이프로그 정보가 급격히 증가하고 있다. 이에 따라 라이프로그를 체계적으로 저장하고 검색하는 일이 중요해지고 있다. 사용자 컨텍스트는 라이프로그 검색의 정확도를 높이기 위한 중요한 요소 중 하나로 논의되어 왔다. 따라서 이를 자동으로 추출하고, 라이프로그의 태깅에 활용하려는 많은 연구가 시도되었다. 그러나 많은 기존 연구들은 컨텍스트를 추출하기 위해 사용자 주변에 센서가 설치되어 있는 환경을 가정하였는데, 이러한 환경은 비용 등의 문제로 일부 제한된 영역에서만 적용 가능하기 때문에, 광범위한 지역에서 사용자의 컨텍스트를 추출할 수 없다는 문제점이 있었다. 본 연구에서는 외부 센서들이 설치된 환경을 가정하지 않고, 스마트폰에 장착된 센서만을 활용하여 사용자의 컨텍스트를 찾아내고, 이를 라이프로그 자동 태깅에 적극 활용하는 방법에 대해 제안한다. 특히 본 연구에서는 기존의 포괄적인 컨텍스트의 정의를 일정 시간 간격동안 지속되는 사용자의 상황으로 한정지어 재정의하고, 이를 라이프로그 태깅에 활용하는 방법에 대해서 논의한다.

  • PDF

의사결정트리 기반 애플리케이션 추천 시스템 (Decision Tree Based Application Recommendation System)

  • 김두형;신재명;박상원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.140-142
    • /
    • 2012
  • 최근 상황인지에 관한 연구가 활발히 진행되고 있으며 스마트폰의 각종 센서를 통해 사용자의 컨텍스트 파악이 가능해졌다. 이에 따라서 스마트폰의 컨텍스트 파악을 통해서 사용자에게 각종 친화적 서비스 모델이 많이 생겨 나고 있다. 사용자의 경로 추론, 실내에서의 사용자의 위치파악, 사용자 위치기반 편의시설 추천 등이 그 예이며, 그 중 애플리케이션 추천은 대표적인 서비스라 할 수 있다. 애플리케이션 추천은 사용자의 컨텍스트에 따라서 애플리케이션 사용내역을 로그 데이터로 만들고, 로그 데이터를 기반으로 컨텍스트에 따라서 사용자의 애플리케이션 추천을 해주는 시스템이다. 여기서 로그 데이터를 가공하지 않고 통계를 통해 추천이 가능하지만, 로그 데이터를 사용하여 의사 결정 트리를 만들게 되면 보다 정확하고, 빠르게 추천이 가능하며 적은 로그 데이터로 더 많은 컨텍스트에 적용하여 추천 할 수 있다는 이점이 있다. 본 논문에서는 사용자의 컨텍스트 추출하고 이 데이터를 기반으로 의사결정트리를 만들어 앱을 추천하는 시스템을 제안한다. 이러한 컨텍스트 수집 방법과 추론모델을 이용한 애플리케이션 추천 시스템은 추후 사용자 친화적 서비스 연구에 많은 도움이 될 것이다.

모바일 기기에서 추천을 위한 Logical Sensor의 설계 (Logical Sensor Framework For Recommendation In Mobile Devices)

  • 김두형;박상원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.149-151
    • /
    • 2012
  • 최근 상황인지에 관한 연구가 활발히 진행되고 있다. 스마트폰의 각종 센서를 통해 사용자의 컨텍스트 수집이 가능해졌고 이러한 사용자의 컨텍스트는 사용자에게 보다 친화적인 서비스를 제공하기 위한 데이터로 활용이 가능하다. 컨텍스트는 물리적 컨텍스트(Physical Context)와 소프트 컨텍스트(Soft Context)로 구분할 수 있다. 이렇게 상황정보를 이용하여 추출된 데이터는 사용자에게 친화적인 서비스를 제공할 수 있는 토대로 활용할 수 있다. 하지만 물리적 컨텍스트만을 이용하는 기존의 방법은 실제로 동적인 사용자의 컨텍스트를 정확하게 유추하기 어려운 구조이다. 본 논문에서는 모바일 기기에서 사용자에게 보다 친화적인 서비스를 제공하기 위해서 소프트 컨텍스트를 사용하여 Logical Sensor를 설계 및 구현한다. 여기서 Logical Sensor는 소프트 컨텍스트를 통해서 사용자의 소셜 네트워크나 사용자의 선호도를 파악하여 로그데이터를 남긴다. 이렇게 얻은 로그데이터는 통계를 통해 사용자의 선호도나 소셜 네트워크를 한눈에 볼 수 있으며, 시간이나 위치에 따라서 사용자가 모바일에서 사용할 애플리케이션이나 통화상대등을 추천 해줄 수 있을 것이다. 이뿐만 아니라 Logical Sensor로부터 얻은 사용자의 로그 데이터는 사용자에게 사용자의 특화된 서비스 개발에 많은 도움이 될 것이다.

모바일 컨텍스트 로그를 사용한 베이지안 네트워크 기반의 랜드마크 예측 모델 학습 (Learning Predictive Model of Memory Landmarks based on Bayesian Network Using Mobile Context Log)

  • 이병길;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.550-552
    • /
    • 2005
  • 유비쿼터스 환경의 발달과 함께 모바일 장비에서 수집되어지는 컨텍스트 로그를 활용한 연구가 활발히 진행되고 있다. 하지만 기존의 컨텍스트 정보를 사용한 연구는 사용자 모델링에 그 초점을 맞추거나 단순하게 수집된 정보를 정리하여 한눈에 알아보기 쉽게 보여주는 정도에 그치고 있다. 본 논문에서는 사용자에게 새로운 서비스를 제공하기 위한 방법으로서 모바일 컨텍스트 로그와 외부 센서를 통해 정보를 수집하여 학습한 베이지안 네트워크를 이용하여 랜드마크를 찾아내는 예측 모델을 제안한다. 베이지안 네트워크 설계는 사전에 수집된 컨텍스트 정보를 요일과 주별로 분류하여 각각에 대한 베이지안 네트워크를 cross validation하여 랜드마크 예측에 대한 정확도를 평가하였다. 그리고 분류에서 가장 많이 사용하고 있는 SVM 방법을 사용하여 제안한 방법과의 성능을 비교평가하였다. 랜드마크 예측에 대한 정확도는 주간별로 설계한 베이지안 네트워크보다 요일별로 설계한 베이지안 네트워크가 랜드마크를 예측하는데 정화도가 높음을 확인하였고, 베이지안 네트워크를 사용한 방법이 SVM을 사용한 방법보다. 예측에 한 정확성이 우수하였다.

  • PDF

애플리케이션 사용정보와 상황정보에 기반한 애플리케이션 추천 시스템 (Context Information Based Application Recommend System Using Application Information)

  • 신재명;김종현;최화영;박상원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(D)
    • /
    • pp.38-40
    • /
    • 2011
  • 최근 상황인지에 관한 연구가 활발히 진행되고 있다. 스마트폰의 각종 센서를 통해 사용자의 컨텍스트 수집이 가능해졌고 이러한 사용자의 컨텍스트는 사용자에게 보다 친화적인 서비스를 제공하기 위한 데이터로 활용이 가능하다. 컨텍스트는 물리적 컨텍스트(Physical Context)와 소프트 컨텍스트(Soft Context)로 구분할 수 있는데 이 두 가지의 컨텍스트를 조합하면 사용자의 취향과 상황 그리고 생활 패턴 등을 보다 정확하게 파악할 수 있다. 이렇게 상황정보를 이용하여 추출된 데이터는 사용자에게 친화적인 서비스를 제공할 수 있는 토대로 활용할 수 있다. 본 논문에서는 사용자의 상황 정보에 기반을 둔 로그 수집 방법과 분석방법을 제시하여 사용자의 상황에 적합한 애플리케이션을 추천하는 시스템을 설계하고 구현하였다. 애플리케이션 추천 시스템은 소프트 컨텍스트와 물리적 컨텍스트의 조합으로 생성한 통계정보를 사용하기 때문에 보다 사용자에게 친화적으로 애플리케이션을 추천할 수 있다. 또한 애플리케이션 추천 시스템은 애플리케이션 카테고리 또는 애플리케이션 사용 횟수에 따른 분류 등으로 사용자의 스마트폰 활용패턴을 통계정보로 나타내준다. 애플리케이션 추천 시스템을 사용함으로써 사용자는 개인에게 가장 알맞은 스마트폰 환경을 사용할 수 있으며, 자신의 애플리케이션 활용 패턴 및 통계정보도 숙지할 수 있어 사용자에게 보다 밀접한 스마트폰 활용 정보를 제공할 수 있다. 이러한 상황정보 기반의 로그 분석과 수집, 그리고 애플리케이션 추천 시스템은 추후 상황인지 및 사용자의 특화된 서비스 개발에 많은 도움이 될 것이다.

모바일 컨텍스트 로그를 사용한 계층적 이야기 구성 모델 (A Hierarchical Storytelling Model Using Mobile Context Log)

  • 이병길;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.49-51
    • /
    • 2006
  • 휴대폰의 사용영역이 넓어지면서 휴대폰에 저장되는 컨텍스트 정보 활용에 관심이 높아지고 있다. 하지만 정보의 양이 방대하기 때문에 개인이 정보를 분석하여 자신에게 필요한 정보로 바꾸기 위해서는 많은 노력이 필요하다. 본 논문에서는 휴대폰으로부터 컨텍스트 정보를 수집하여 활용할 수 있는 방법으로 개인이 하루 동안 경험한 일에 대한 정보를 한 눈에 알아볼 수 있도록 도와주는 계층적 이야기 구성 모델을 제안한다. 계층적 이야기 구성 모델은 3단계로 구성된다. 우선 각각의 로그를 분석하여 관련 있는 것들을 그룹으로 분류하고 분류된 그룹 내에서 설정된 경로에 대한 가중치를 계산하여 해당 그룹의 가중치로 저장한다. 마지막으로 그룹간의 경로에 대한 가중치를 계산하여 가장 높은 가중치를 갖는 경로를 한아 이야기 구성 모델로 설정한다. 계층적으로 이야기 경로를 선택한 경우와 그룹으로 분류하지 않고 경로를 계산한 경우의 시간 복잡도를 비교 평가하여 성능을 측정하였다. 이야기 구성모델을 계층적으로 분류했을 때의 성능이 분류하지 않은 경우보다 경로를 선정할 때 더 높은 성능을 나타내었다.

  • PDF

모바일 환경에서의 지능형 서비스를 위한 베이지안 추론과 컨텍스트 트리 매칭방법 (Bayesian Inferrence and Context-Tree Matching Method for Intelligent Services in a Mobile Environment)

  • 김희택;민준기;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권2호
    • /
    • pp.144-152
    • /
    • 2009
  • 모바일 환경에서 지능형 서비스를 제공하기 위해서는 사용자의 성향이나 행동패턴 둥의 컨텍스트 정보를 효과적으로 분석하여 사용자의 의도나 요구사항을 예측할 필요가 있다. 본 논문에서는 모바일 디바이스에 축적된 불확실한 로그 정보에서 컨텍스트 정보를 추론하고, 이를 효과적으로 서비스와 매칭해 주기 위한 컨텍스트 트리 기반 사용자 행동 추론 방법을 제안한다. 이 때 불확실한 컨텍스트 정보를 효과적으로 추론하기 위해 베이지안 확률 접근 방법을 채택하였으며, 컨텍스트 트리는 수학적인 방법만으로는 다룰 수 없는 비 수치적인 컨텍스트를 효과적으로 활용하기 위해 선택한 구조이다. 그리고 제안하는 방법을 지능형 전화상대 추천 서비스에 적용하여 유용성을 검증하였다.

확률기반 상위수준 컨텍스트 인식기를 활용한 라이프로그 태깅 인터페이스 (A Lifelog Tagging Interface using High Level Context Recognizer based on Probability)

  • 황주원;이영설;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권10호
    • /
    • pp.781-785
    • /
    • 2009
  • 모바일 디바이스의 발전으로 이를 이용하여 개인의 일상정보를 지속적으로 수집할 수 있게 되었다. 하지만 모바일 환경에서 수집한 개인의 일상정보는 그 양이 매우 방대하고, 모바일 환경의 불확실성과 모바일 디바이스의 제한된 용량과 배터리 등의 제약사항이 있어 수집한 일상정보가 불확실하다는 문제점이 있다. 위의 문제점을 극복하고, 일상정보를 효과적으로 관리하기 위해서는 검색성을 갖는 특징정보를 이용하여 태깅하는 작업이 요구된다. 따라서, 본 논문에서는 상위수준 컨텍스트 인식기를 활용한 태깅 인터페이스를 이용하여 보다 정확한 특징정보를 태깅하는 방법을 제안한다. 제안하는 방법은 일상정보의 특징정보인 상위수준 컨텍스트를 베이지안 네트워크로 모델링한 인식기로 추출한 후, 인식한 상위수준 컨텍스트를 태깅 인터페이스를 이용하여 사용자에게 추천하고, 사용자는 추천된 상위 수준 컨텍스트를 선별하여 일상정보에 직접 태깅할 수 있는 것이 특징이다. 제안하는 태깅 인터페이스는 사용성, 목표성, 기능성, 주도성 측면에서 작업지원수준을 평가한 결과 81%의 만족도를 보임을 확인하였다.

모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습 (Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log)

  • 이병길;임성수;조성배
    • 인지과학
    • /
    • 제20권4호
    • /
    • pp.535-554
    • /
    • 2009
  • 모바일 장비에서 수집되는 정보는 개인의 기억을 보조하기 위한 수단으로 활용될 수 있지만, 그 양이 너무 많아 사용자가 효과적으로 검색하기에는 어려움이 있다. 데이터를 사람의 기억과 유사한 에피소드 방식으로 저장하기 위해 중요 이벤트인 랜드마크를 탐지하는 것이 필요하다. 본 논문에서는 사용자에게 새로운 서비스를 제공하기 위해서 다양한 컨텍스트 로그 정보로부터 자동으로 랜드마크를 찾아내는 속성별 베이지안 랜드마크 예측 모델을 제안한다. 랜드마크 예측 정확도를 높이기 위해 요일별, 주간별로 데이터를 나누고 다시 수집된 경로에 따른 속성으로 분류하여 학습을 통해 베이지안 네트워크를 생성하였다. 노키아의 로그데이터로 실험한 결과, 베이지안 네트워크를 사용한 방법이 SVM을 사용한 방법보다 예측성능이 높았으며, 주간별 및 요일별로 설계한 베이지안 네트워크에 비해 제안한 방법인 속성별 베이지안 네트워크의 성능이 가장 우수하였다.

  • PDF

컨텍스트 기반 사용자 간 소셜 네트워크 구성 방법 (Context-based Social Network Configuration Method between Users)

  • 한종현;우운택
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.11-14
    • /
    • 2009
  • 본 논문에서는 사용자의 컨텍스트 및 프로파일을 이용하여 사용자들 간의 소셜 네트워크를 구성하는 방법을 제안한다. 최근 협업 시스템과 관련하여 소셜 네트워크에 대한 관심이 증대되고 있다. 하지만 기존 연구의 경우, 사용자 로그 및 프로파일과 같은 정적인 데이터에 기반하고 있어서 동적으로 변화하는 환경에서의 소셜 네트워크를 구성하기 어렵다. 따라서 제안된 방법은 유비쿼터스 컴퓨팅 환경에서 정적인 사용자 프로파일과 함께 사용자의 행동을 반영하는 컨텍스트를 이용하여 소셜 네트워크를 구성한다. 컨텍스트 도메인 지식 모델의 계층적 구조 특성을 이용하여 컨텍스트들 간의 유사도를 계산하고, 컨텍스트 모델의 카테고리에 가중치를 부여하여 컨텍스트들 간의 관계성을 계산한다. 제안된 방법의 유용성을 검증하기 위해 사용자의 컨텍스트 변화에 따른 소셜 네트워크의 동적 구성을 실험하였다. 제안된 방법을 활용하여 사용자들의 행동에 동적으로 반응하는 관계 분석이 가능하게 될 것으로 기대된다.

  • PDF