• Title/Summary/Keyword: 컨볼루션 신경망

Search Result 165, Processing Time 0.023 seconds

Performance Comparisons of GAN-Based Generative Models for New Product Development (신제품 개발을 위한 GAN 기반 생성모델 성능 비교)

  • Lee, Dong-Hun;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.867-871
    • /
    • 2022
  • Amid the recent rapid trend change, the change in design has a great impact on the sales of fashion companies, so it is inevitable to be careful in choosing new designs. With the recent development of the artificial intelligence field, various machine learning is being used a lot in the fashion market to increase consumers' preferences. To contribute to increasing reliability in the development of new products by quantifying abstract concepts such as preferences, we generate new images that do not exist through three adversarial generative neural networks (GANs) and numerically compare abstract concepts of preferences using pre-trained convolution neural networks (CNNs). Deep convolutional generative adversarial networks (DCGAN), Progressive growing adversarial networks (PGGAN), and Dual Discriminator generative adversarial networks (DANs), which were trained to produce comparative, high-level, and high-level images. The degree of similarity measured was considered as a preference, and the experimental results showed that D2GAN showed a relatively high similarity compared to DCGAN and PGGAN.

컨벌루션 신경망을 이용한 공간큐 기반 다채널 오디오 확장 기술

  • Beack, Seungkwon;Lim, Wootaek;Lee, Tajin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.153-155
    • /
    • 2019
  • 본 논문에서는 컨볼루션 신경망을 이용하여 예측 된 공간 오디오 큐를 이용한 오디오 채널 확장 기술을 소개한다. 오디오 채널 확장 기술은 일반적인 스테레오 신호에 적용되어 5.1 레이아웃과 같은 고차원 오디오 신호를 생성하는 기술이다. 스테레오 신호에서 채널을 확장하기 위해 스테레오 신호에서 공간 큐를 예측하고 예측 공간 큐의 방향에 따라 5.1 채널 신호의 스펙트럼 구성 요소를 할당하여 다중 채널 신호를 합성한다. 제안된 방식으로 생성된 5.1 채널 신호는 원 5.1 채널과 유사한 공간 정보 합성 능력과 스테레오 대비 주관적 선호도가 개선된 음질을 제공한다.

  • PDF

Video Deinterlace based on Convolutional Neural Network (컨벌루션 신경망 기반 비디오 디인터레이스 기법)

  • Jeong, Jinwoo;Ahn, Ha-Eun;Kim, Je Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.73-75
    • /
    • 2019
  • 인터레이스 영상은 지난 수 십 년간 방송 및 비디오 레코딩 등에 광범위하게 사용되고 있으며 디인터레이스의 성능을 향상 시키기 위한 많은 연구가 이루어졌다. 이를 위한 것으로써 본 논문에서는 컨볼루션 신경망을 이용한 비디오 디인터레이스 기법을 제안한다. 제안한 방법은 SKIP 연결을 사용하여 낮은 수준 특징 정보를 뒷 단의 레이어까지 전달함으로써 성능 향상을 달성하였다. 실험 결과는 FFMPEG 에서 제공하는 디인터레이스 기법에 비해 전 영상에 걸쳐 우수한 성능을 제공하며, 특히 복잡한 영상에서 기존 알고리즘 대비 큰 폭의 성능향상을 보인다.

  • PDF

Global Weight: Network Level Weight Sharing for Compression of Deep Neural Network (Global Weight: 심층 신경망의 압축을 위한 네트워크 수준의 가중치 공유)

  • Shin, Eunseop;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.22-25
    • /
    • 2020
  • 본 논문에서는 큰 크기의 심층 신경망을 압축하기위해 네트워크 수준의 가중치 공유방법인 Global Weight 패러다임을 최초로 제시한다. 기존의 가중치 공유방법은 계층별로 가중치를 공유하는 것이 대부분이었다. Global Weight 는 기존 방법과 달리 전체 네트워크에서 가중치를 공유하는 효율적인 방법이다. 우리는 Global Weight 를 사용하여 학습되는 새로운 컨볼루션 연산인 Global Weight Convolution(GWConv)연산과 GWConv를 적용한 Global Weight Networks(GWNet)을 제안한다. CIFAR10 데이터셋에서 실험한 결과 2.18 배 압축에서 85.64%, 3.41 배 압축에서 85.46%의 정확도를 보였다. Global Weight 패러다임은 가중치 공유가 궁극적으로 풀고자 했던 중복되는 가중치를 최소화하는 획기적인 방법이며, 추후 심도 있는 연구가 수행될 수 있음을 시사한다.

  • PDF

Comparative Analysis of Classification Methods for Alzheimer's Dementia Patients (알츠하이머 치매환자 분류 방법 비교 분석)

  • Lee, Jae-Kyung;Seo, Jin-Beom;Lee, Jae-Seong;Cho, Young-Bok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.323-324
    • /
    • 2022
  • 전 세계적으로 고령화 사회가 지속됨에 따라 평균수명이 증가하여 고령화 문제가 심각해지고 있는 추세이다. 고령에 속하는 65세 이상 노인들이 자주 발병하는 알츠하이머 치매는 명확한 치료법이 존재하지 않아 발병 전 조기 발견 및 예방이 중요하다. 본 논문에서는 컨볼루션 신경망을 기반으로 한 알츠하이머 치매분류방법을 제안한 논문과, 그래프 합성곱 신경망, 다중 커널 학습 분류기, 기계학습, SVM 분류기 등의 방법으로 알츠하이머 치매 분류에 대한 논문을 소개하고, 각각의 제안 방법 및 특징에 대해 비교분석한다.

  • PDF

Deep Learning Methods for Explainable Image Recognition (설명 가능한 이미지 인식을 위한 채널 주의 기반 딥러닝 방법)

  • BaiNa;Inwhee Joe
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.586-589
    • /
    • 2024
  • 본 실험 연구에서는 주의 메커니즘과 컨볼루션 신경망을 결합하여 모델을 개선하는 방법을 탐색하는 딥 러닝 기술을 소개한다. 이 기술은 지도 학습 방식을 위해 공개 데이터 세트의 쓰레기 분류 데이터를 사용하고, Grad-CAM 기술과 채널 주의 메커니즘 SE 를 적용하여 모델의 분류 의사 결정 과정을 더 잘 이해하기 위해 히트 맵을 생성한다. Grad-CAM 기술을 사용하여 히트 맵을 생성하면 분류 중에 모델이 집중하는 영역을 시각화할 수 있다. 이는 모델의 분류 결정을 설명하는 방법을 제공하여 다양한 이미지 카테고리에 대한 모델 결정의 기초를 더 잘 이해할 수 있다. 실험 결과는 전통적인 합성곱 신경망과 비교하여 제안한 방법이 쓰레기 분류 작업에서 더나은 성능을 달성한다는 것을 보여준다. 주의 메커니즘과 히트맵 해석을 결합함으로써 우리 모델은분류 정확도를 향상시킬 수 있다. 이는 실제 응용 분야의 이미지 분류 작업에 큰 의미가 있으며 해석 가능성에 대한 딥 러닝 연구 진행을 촉진하는 데 도움이 된다.

A Study on Hand Detection using Deep Learning (딥러닝을 이용한 손검출에 관한 연구)

  • Pak, Myeong-Suk;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.471-473
    • /
    • 2018
  • 딥러닝은 이미지 분류 및 객체 검출과 같은 여러 컴퓨터 비전 관련 작업에 성공적으로 사용되었다. 손 검출은 인간 컴퓨터 상호작용 분야에서 손 분류 및 손 동작 인식을 위한 매우 중요한 부분이며 딥러닝을 사용하여 시도되었다. 본 연구에서는 손 데이터 셋을 이용하여 컨볼루션 신경망을 훈련시킨 다음 학습된 특징을 시각화하고, CNN 아키텍처와 손 데이터 셋의 결과를 각각 살펴보며 손 검출에 대한 이해를 제공한다.

Improvements of Intra-predicted Block (인트라 블록의 예측 정확도 향상 기술)

  • Jung, Hyesun;Kang, Je-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.65-66
    • /
    • 2022
  • 본 논문은 딥러닝을 이용하여 예측 블록을 개선하는 화면 내 예측 기법을 제안한다. 컨볼루션 신경망 네트워크로부터 기존의 VVC의 화면 내 예측 모드를 통해 구성한 예측 블록과 주변 참조 샘플을 통과하여 보다 원본에 가까운 예측 블록을 생성한다. 따라서 예측 후 신호는 원본 블록과의 차분 신호를 줄여 비디오 부호화 성능을 향상하게 된다. 실험 결과, VTM-10.0 대비 휘도성분에 대해 약 1.16%의 BD-rate을 개선하였다.

  • PDF

Action Classification Using IMU of Wearable Watch to Detect Critical Situation (위험 상황 감지를 위한 스마트워치 IMU 기반 동작분류)

  • Ha-Eun Oh;Jae-Hyun Yoo
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.631-632
    • /
    • 2024
  • 본 연구는 웨어러블 기기를 이용하여 위험 상황을 감지하고 사고 예방에 기여할 방법을 탐색한다. 데이터의 시간 영역과 주파수 영역의 분석을 통해 위험한 상황과 일반적인 상황을 구분하는 성능을 비교한다. 비딥러닝 모델과 딥러닝 모델을 비교 평가하였다. 결과적으로 시간 영역보다 주파수 영역에서 컨볼루션 신경망 모델이 우수한 성능을 나타내었다.

Seasonal Images Classification with Convolutional Neural Networks (컨볼루션 신경망을 사용한 계절 이미지 분류)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.444-447
    • /
    • 2022
  • In recent years, computer vision image classification tasks have become faster and better due to deeper neural network architectures. But while most image classification tasks are designed to classify images based on specific image features (such as distinguishing between cats and dogs), there are not many classification models that have been trained to distinguish between time periods such as day and night or different seasons of the year. And while some research has been done into distinguishing between seasons in images of the same location, this paper presents a varied approach to the problem of seasonal classification of generic images. Three methods for seasonal image classification, from simple feature extraction, to building a convolutional neural network, to transfer learning were studied and the accuracy results were compared and analyzed.

  • PDF