• 제목/요약/키워드: 컨볼루션 신경망

검색결과 162건 처리시간 0.026초

컨벌루션 신경망을 이용한 공간큐 기반 다채널 오디오 확장 기술

  • 백승권;임우택;이태진
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.153-155
    • /
    • 2019
  • 본 논문에서는 컨볼루션 신경망을 이용하여 예측 된 공간 오디오 큐를 이용한 오디오 채널 확장 기술을 소개한다. 오디오 채널 확장 기술은 일반적인 스테레오 신호에 적용되어 5.1 레이아웃과 같은 고차원 오디오 신호를 생성하는 기술이다. 스테레오 신호에서 채널을 확장하기 위해 스테레오 신호에서 공간 큐를 예측하고 예측 공간 큐의 방향에 따라 5.1 채널 신호의 스펙트럼 구성 요소를 할당하여 다중 채널 신호를 합성한다. 제안된 방식으로 생성된 5.1 채널 신호는 원 5.1 채널과 유사한 공간 정보 합성 능력과 스테레오 대비 주관적 선호도가 개선된 음질을 제공한다.

  • PDF

컨벌루션 신경망 기반 비디오 디인터레이스 기법 (Video Deinterlace based on Convolutional Neural Network)

  • 정진우;안하은;김제우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.73-75
    • /
    • 2019
  • 인터레이스 영상은 지난 수 십 년간 방송 및 비디오 레코딩 등에 광범위하게 사용되고 있으며 디인터레이스의 성능을 향상 시키기 위한 많은 연구가 이루어졌다. 이를 위한 것으로써 본 논문에서는 컨볼루션 신경망을 이용한 비디오 디인터레이스 기법을 제안한다. 제안한 방법은 SKIP 연결을 사용하여 낮은 수준 특징 정보를 뒷 단의 레이어까지 전달함으로써 성능 향상을 달성하였다. 실험 결과는 FFMPEG 에서 제공하는 디인터레이스 기법에 비해 전 영상에 걸쳐 우수한 성능을 제공하며, 특히 복잡한 영상에서 기존 알고리즘 대비 큰 폭의 성능향상을 보인다.

  • PDF

Global Weight: 심층 신경망의 압축을 위한 네트워크 수준의 가중치 공유 (Global Weight: Network Level Weight Sharing for Compression of Deep Neural Network)

  • 신은섭;배성호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.22-25
    • /
    • 2020
  • 본 논문에서는 큰 크기의 심층 신경망을 압축하기위해 네트워크 수준의 가중치 공유방법인 Global Weight 패러다임을 최초로 제시한다. 기존의 가중치 공유방법은 계층별로 가중치를 공유하는 것이 대부분이었다. Global Weight 는 기존 방법과 달리 전체 네트워크에서 가중치를 공유하는 효율적인 방법이다. 우리는 Global Weight 를 사용하여 학습되는 새로운 컨볼루션 연산인 Global Weight Convolution(GWConv)연산과 GWConv를 적용한 Global Weight Networks(GWNet)을 제안한다. CIFAR10 데이터셋에서 실험한 결과 2.18 배 압축에서 85.64%, 3.41 배 압축에서 85.46%의 정확도를 보였다. Global Weight 패러다임은 가중치 공유가 궁극적으로 풀고자 했던 중복되는 가중치를 최소화하는 획기적인 방법이며, 추후 심도 있는 연구가 수행될 수 있음을 시사한다.

  • PDF

알츠하이머 치매환자 분류 방법 비교 분석 (Comparative Analysis of Classification Methods for Alzheimer's Dementia Patients)

  • 이재경;서진범;이재성;조영복
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.323-324
    • /
    • 2022
  • 전 세계적으로 고령화 사회가 지속됨에 따라 평균수명이 증가하여 고령화 문제가 심각해지고 있는 추세이다. 고령에 속하는 65세 이상 노인들이 자주 발병하는 알츠하이머 치매는 명확한 치료법이 존재하지 않아 발병 전 조기 발견 및 예방이 중요하다. 본 논문에서는 컨볼루션 신경망을 기반으로 한 알츠하이머 치매분류방법을 제안한 논문과, 그래프 합성곱 신경망, 다중 커널 학습 분류기, 기계학습, SVM 분류기 등의 방법으로 알츠하이머 치매 분류에 대한 논문을 소개하고, 각각의 제안 방법 및 특징에 대해 비교분석한다.

  • PDF

설명 가능한 이미지 인식을 위한 채널 주의 기반 딥러닝 방법 (Deep Learning Methods for Explainable Image Recognition)

  • 백나;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.586-589
    • /
    • 2024
  • 본 실험 연구에서는 주의 메커니즘과 컨볼루션 신경망을 결합하여 모델을 개선하는 방법을 탐색하는 딥 러닝 기술을 소개한다. 이 기술은 지도 학습 방식을 위해 공개 데이터 세트의 쓰레기 분류 데이터를 사용하고, Grad-CAM 기술과 채널 주의 메커니즘 SE 를 적용하여 모델의 분류 의사 결정 과정을 더 잘 이해하기 위해 히트 맵을 생성한다. Grad-CAM 기술을 사용하여 히트 맵을 생성하면 분류 중에 모델이 집중하는 영역을 시각화할 수 있다. 이는 모델의 분류 결정을 설명하는 방법을 제공하여 다양한 이미지 카테고리에 대한 모델 결정의 기초를 더 잘 이해할 수 있다. 실험 결과는 전통적인 합성곱 신경망과 비교하여 제안한 방법이 쓰레기 분류 작업에서 더나은 성능을 달성한다는 것을 보여준다. 주의 메커니즘과 히트맵 해석을 결합함으로써 우리 모델은분류 정확도를 향상시킬 수 있다. 이는 실제 응용 분야의 이미지 분류 작업에 큰 의미가 있으며 해석 가능성에 대한 딥 러닝 연구 진행을 촉진하는 데 도움이 된다.

딥러닝을 이용한 손검출에 관한 연구 (A Study on Hand Detection using Deep Learning)

  • 박명숙;김상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.471-473
    • /
    • 2018
  • 딥러닝은 이미지 분류 및 객체 검출과 같은 여러 컴퓨터 비전 관련 작업에 성공적으로 사용되었다. 손 검출은 인간 컴퓨터 상호작용 분야에서 손 분류 및 손 동작 인식을 위한 매우 중요한 부분이며 딥러닝을 사용하여 시도되었다. 본 연구에서는 손 데이터 셋을 이용하여 컨볼루션 신경망을 훈련시킨 다음 학습된 특징을 시각화하고, CNN 아키텍처와 손 데이터 셋의 결과를 각각 살펴보며 손 검출에 대한 이해를 제공한다.

인트라 블록의 예측 정확도 향상 기술 (Improvements of Intra-predicted Block)

  • 정혜선;강제원
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.65-66
    • /
    • 2022
  • 본 논문은 딥러닝을 이용하여 예측 블록을 개선하는 화면 내 예측 기법을 제안한다. 컨볼루션 신경망 네트워크로부터 기존의 VVC의 화면 내 예측 모드를 통해 구성한 예측 블록과 주변 참조 샘플을 통과하여 보다 원본에 가까운 예측 블록을 생성한다. 따라서 예측 후 신호는 원본 블록과의 차분 신호를 줄여 비디오 부호화 성능을 향상하게 된다. 실험 결과, VTM-10.0 대비 휘도성분에 대해 약 1.16%의 BD-rate을 개선하였다.

  • PDF

위험 상황 감지를 위한 스마트워치 IMU 기반 동작분류 (Action Classification Using IMU of Wearable Watch to Detect Critical Situation)

  • 오하은;유재현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.631-632
    • /
    • 2024
  • 본 연구는 웨어러블 기기를 이용하여 위험 상황을 감지하고 사고 예방에 기여할 방법을 탐색한다. 데이터의 시간 영역과 주파수 영역의 분석을 통해 위험한 상황과 일반적인 상황을 구분하는 성능을 비교한다. 비딥러닝 모델과 딥러닝 모델을 비교 평가하였다. 결과적으로 시간 영역보다 주파수 영역에서 컨볼루션 신경망 모델이 우수한 성능을 나타내었다.

컨볼루션 신경망을 사용한 계절 이미지 분류 (Seasonal Images Classification with Convolutional Neural Networks)

  • 에런 스노버거;이충호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.444-447
    • /
    • 2022
  • 최근 몇 년 동안 더 깊은 신경망 아키텍처로 인해 컴퓨터 비전 이미지 분류 작업이 더 빠르고 더 좋아졌다. 그러나 대부분의 이미지 분류 작업은 특정 이미지 모양(예: 고양이와 개 구별)을 기반으로 분류하도록 설계되었지만 낮과 밤 또는 사계절과 같은 기간을 구별하도록 훈련된 분류 모델은 많지 않다. 같은 장소의 사계절 이미지를 구분하기 위한 선행 연구는 있는 반면 일반 영상의 계절 분류 연구는 현재 부재한 실정이다. 그래서 본 논문에서는 일반 영상의 계절 분류 문제에 대한 다양한 접근 방식을 제시한다. 간단한 특징 추출부터 합성곱 신경망 구축, 전이 학습에 이르기까지 계절별 이미지 분류를 위한 세 가지 방법을 연구하고 정확도 결과를 비교, 분석하였다.

  • PDF

국소부위 패턴 표현을 위한 샘플링 기반 초해상도 U-Net (Sampling-based Super Resolution U-net for Pattern Expression of Local Areas)

  • 이교석;갈원모;임명재
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.185-191
    • /
    • 2022
  • 본 연구에서는 U-Net, 잔차 신경망, 서브 픽셀 컨볼루션을 기반으로 새로운 초해상도 신경망을 제안한다. U-Net의 최대 풀링으로 인해 세부적인 정보의 손실이 일어나는 것을 막기 위해 서브 픽셀 컨볼루션을 활용한 다운 샘플링 그리고 연결을 제안한다. 이는 필터 안의 최대 값만으로 새로운 피처맵을 만드는 최대 풀링과 다르게 필터 안의 모든 픽셀을 사용한다. 2×2 크기의 필터가 지나가면서 왼쪽 위, 오른쪽 위, 왼쪽 아래, 오른쪽 아래의 픽셀들로만 이루어진 피처맵을 만든다. 이를 통해 크기가 절반이 되고, 피처맵이 개수가 4배가 된다. 그리고 연산량을 줄이기 위해 두 가지 방법을 제안했다. 첫 번째는 U-Net의 업 컨볼루션 대신 연산량이 없고, 성능이 더 좋은 서브 픽셀 컨볼루션을 사용한다. 두 번째는 U-Net의 연결 층 대신 두 피처 맵을 더하는 층을 사용한다. 밴치 마크 데이터 세트로 실험한 결과 스케일 2의 set5 데이터를 제외하고 모든 스케일 및 벤치마크 데이터 세트에서 더 나은 PSNR 값을 보여주고, 국소부위의 패턴을 명확하게 표현할 수 있었다.