• Title/Summary/Keyword: 커먼레일 인젝터

Search Result 49, Processing Time 0.027 seconds

A Study on the Injection Rate Observer of the Piezo-actuated and Solenoid-operated Injectors for CRDI Diesel Engines (직분식 커먼레일 디젤엔진의 피에조 인젝터와 솔레노이드 인젝터의 연료분사율 추정)

  • Sa, Jong-Seong;Chung, Nam-Hoon;SunWoo, Myoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.52-59
    • /
    • 2007
  • Fuel injection system greatly affects the performance of a direct injection diesel engine. A common rail injection system was introduced to satisfy the stringent emission standards, low fuel consumption, and low noise in recent years. The performance of a common-rail fuel injection system is strongly influenced by the injector characteristics. The common rail injector has evolved in order to improve its injection performance. The piezo-actuated injector is more suitable for common rail injection system due to its fast response and is expected to replace current solenoid-operated injector. In this study, nonlinear mathematical models are proposed for the solenoid-operated and the piezo-actuated injectors for control applications. Based on these models, the injection rate, which is one of the most important factors for the injection characteristics, is estimated using sliding mode observer. The simulation results and the experimental data show that the proposed sliding mode observers can effectively estimate the injection timing and the injection rate for both common-rail injectors.

An Investigation on a Spray Characteristics of Oxygenated Fuel with a Piezo Injector Common Rail System (피에조 인젝터 커먼레일 시스템을 이용한 함산소연료의 분무특성에 관한 연구)

  • Lee, Sejun;Yang, Jiwong;Kim, Sangill;Lim, Ocktaeck
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.171-177
    • /
    • 2012
  • To understand oxygenated fuel characteristics including spray penetration length and spray angle at a real engine ambient pressure condition, DME was injected into a high pressure chamber by a piezo injector common rail system. The piezo injector common rail system was able to apply steady injection pressure, rapid response, and accurate injection quantity. Injection and ambient pressure were varied to confirm a relation with spray form. Using a direct photographing technique, development process of DME spray was captured. DME injection quantity was enlarged linearly as increasing of the injection pressure. In the high pressure chamber, when the injection pressure was enlarged the penetration length and velocity were increased due to a big momentum of fuel particle at the same ambient pressure. When ambient pressure was increased, the DME spray penetration length and velocity were decreased since the high ambient density of nitrogen was acted as a resistance. Although the ambient pressure and injection pressure were varied, each case of spray angle was almost same since the spray angle had a connection of the injector nozzle geometry.

Common Rail Pressure Control Algorithm for Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT를 이용한 디젤엔진의 커먼레일 압력 제어알고리즘 설계 연구)

  • Shin, Jaewook;Hong, Seungwoo;Park, Inseok;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • This paper proposes a common rail pressure control algorithm for passenger car diesel engines. For handling the parameter-varying characteristics of common rail systems, the quantitative feedback theory (QFT) is applied to the design of a robust rail pressure control algorithm. The driving current of the pressure control valve and the common rail pressure are used as the input/output variables for the common rail system model. The model parameter uncertainty ranges are identified through experiments. Rail pressure controller requirements in terms of tracking performance, robust stability, and disturbance rejection are defined on a Nichols chart, and these requirements are fulfilled by designing a compensator and a prefilter in the QFT framework. The proposed common rail pressure control algorithm is validated through engine experiments. The experimental results show that the proposed rail pressure controller has a good degree of consistency under various operating conditions, and it successfully satisfies the requirements for reference tracking and disturbance rejection.

Study of the effects of injector cleaning on the exhaust gases in a common rail diesel engine (커먼레일 디젤엔진의 인젝터 클리닝이 배기가스에 미치는 영향에 관한 연구)

  • Cho, Hong-Hyun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5980-5987
    • /
    • 2014
  • As a response to exhaust gas regulations, the electronic control system was applied to the diesel engine. The injected fuel mass and injection timing are accurately controlled using it, and the fuel efficiency and the engine output are significantly increased. In addition, the noise and the vibration of vehicles are decreased. To maintain the optimal performance of an electronic control diesel engine, it is important to control the fuel injection pressure accurately using the fuel pressure regulator. When the fuel pressure regulator is not worked normally, the failure phenomena (starting failure, staring delay, accelerated failure, engine mismatch et al.) occurred because the fuel pressure is not stabilized and controlled accurately. In this study, the effects on a fuel pressure, return fuel mass flow, and engine rotating speed according to the control rate of fuel pressure regulator were investigated to analyze the performance variation under the failure conditions of a fuel pressure regulator. As a result, when the control rate of a fuel pressure regulator decreased by 4%~6% compared to that of the standard condition, the variation of engine rotating speed and return fuel flow were increased greatly, and the abnormal condition occurred. In addition, it is possible to diagnose the failure of a fuel pressure regulator by monitoring these conditions.

A Study on Injector Durability Test with Diesel and BD20 Using Common Rail (커먼레일을 이용한 디젤과 BD20 연료가 인젝터에 미치는 영향에 관한 연구)

  • JEONG, YUNHO;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.393-401
    • /
    • 2015
  • The characteristics of diesel and biodiesel are similar like as cetane number and auto-ignition temperature. High cetane number of diesel and BD could make possible to compression ignition. but BD showed different atomization from diesel due to component like density, viscosity and iodine value etc. Because of this, the biodiesel requires validation. This study using diesel and BD20 investigated effect to durability injector. Durability test were used common rail and bosch solenoid type 5-hole injector. Total test was 672hr but actual running time was 200hr. Spray experiments for spray characteristics were carried out using constant volume combustion chamber. Spray characteristics of diesel and BD showed different result up to durability test time. After 100hr, diesel showed spray shapes were stable but BD was not. After 200hr, difference of diesel and BD spray shapes were grow serious.

Verification and Hydraulic Model Development of 3rd Generation Piezo Injector for CRDi System in Passenger Vehicle (승용CRDi용 3세대 피에조 인젝터 유압해석모델 개발 및 검증)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to its emission characteristics and fuel consumption. In this study, numerical model of 3rd generation piezo-driven injector was designed to analyze the hydraulic performance. Also the injection response characteristics was investigated by using the AMESim simulation code. From this study, it was shown that 3rd generation piezo-driven injector had a faster response and had better control capability due to its hydraulic bypass-circuit that has potential to higher hydraulic characteristics and improved accuracy of injected fuel quantity.

A Study on the Model of an HSDI Common-Rail Injector and the Estimation of Needle Lift (HSDI Common-Rail 인젝터 모델링 및 니들 변위 추정에 관한 연구)

  • 성경훈;박승범;선우명호;나형규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2002
  • This paper presents the process of the needle lift estimation ova common-rail injector fur HSDI(High Speed Direct Injection) diesel engines. A nonlinear mathematical model of dynamic behaviors of common-rail injector is established at first. Based on the mathematical model of the common-rail injector, the methodology of estimating the injector needle lift is introduced. A sliding mode observer is applied to overcome the model uncertainties. The common-rail injector model and the needle lift estimator are verified by simulations and experiments. The simulation and experimental results indicate that the model outputs are in a good agreement with experimental data, and the proposed nonlinear sliding observer can effectively estimate the needle lift.

Dynamic Model of an HSDI Common-rail Injector and Injection Rate Estimation (HSDI 커먼레일 인젝터 동적 모델 및 분사율 추정)

  • 남기훈;박승범;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.43-49
    • /
    • 2003
  • The common-rail fuel injection system is becoming a common technology for High Speed Direct Injection(HSDI) diesel engines. The injection timing and rate are important factors for combustion control and pollutants formation mechanisms during engine operation. This paper introduces an estimation methodology of the injection timing and rate of a common-rail injector for HSDI diesel engines. A sliding mode observer that is based on the nonlinear mathematical model of the common-rail injector is designed to overcome the model uncertainties. The injector model and the estimator we verified by relevant injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection rate of the common-rail injector.

An experimental study on the impingement spray of a common-rail diesel injector (1) -macroscopic characteristics- (커먼레일식 디젤 인젝터의 충돌 분무에 대한 실험적 연구(1) -거시적 분무 발달 과정-)

  • Lee, C.S.;Park, S.W.;Seo, S.H.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.10-18
    • /
    • 2003
  • In this paper, experimental study on the wan impingement spray of the common-rail diesel injector is performed. To examine the effect of various factors on the development of spray impinging on the wall, experiments were conducted at the various injection pressures. ambient pressures, wan distances from the injector tip, wall temperatures, and angles of wall inclination. The behaviors of the impingement spray ate visualized by using laser sheet methods and a ICCD camera. It is shown that the spray path penetration of the wall impingement spray increases with the increase of injection pressure, wall distance. wall temperature, wall angle. On the other hand the spray path penetration of the wan impingement spray decreases with the increase of ambient pressure.

  • PDF

Experimental Study on Spray Characteristics of Piezo Injector Group-hole Nozzle for Common Rail Diesel Engine (커먼레일 디젤기관용 피에조 인젝터 그룹홀 노즐의 분무 특성에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.14-19
    • /
    • 2008
  • In order to meet stringent future emission regulations, especially to reduce Particulate Matter (PM) and NOX, stoichiometric diesel combustion technology with a piezo group-hole nozzle injector is being researched for reduction harmful emissions. A new nozzle layout, namely a group-hole nozzle, which has one group of small orifices with a wide spray included angle was investigated to improve the efficiency of stoichiometric diesel combustion. From this point of view, the group-hole nozzle suggested by Dense Co. is an attractive candidate method applicable to stoichiometric diesel combustion. The group-hole nozzle concept is to reduce the injector nozzle hole diameters without sacrificing spray penetration by closely locating two holes. Experimental studies have proven that the spray from group-hole nozzles have similar spray penetration to that of a single hole with equivalent overall nozzle hole area, but the spray drop sizes (SMD) are reduced, aiding vaporization and mixing.

  • PDF